cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A264902 Number T(n,k) of defective parking functions of length n and defect k; triangle T(n,k), n>=0, 0<=k<=max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 3, 1, 16, 10, 1, 125, 107, 23, 1, 1296, 1346, 436, 46, 1, 16807, 19917, 8402, 1442, 87, 1, 262144, 341986, 173860, 41070, 4320, 162, 1, 4782969, 6713975, 3924685, 1166083, 176843, 12357, 303, 1, 100000000, 148717762, 96920092, 34268902, 6768184, 710314, 34660, 574, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2015

Keywords

Examples

			T(2,0) = 3: [1,1], [1,2], [2,1].
T(2,1) = 1: [2,2].
T(3,1) = 10: [1,3,3], [2,2,2], [2,2,3], [2,3,2], [2,3,3], [3,1,3], [3,2,2], [3,2,3], [3,3,1], [3,3,2].
T(3,2) = 1: [3,3,3].
Triangle T(n,k) begins:
0 :       1;
1 :       1;
2 :       3,       1;
3 :      16,      10,       1;
4 :     125,     107,      23,       1;
5 :    1296,    1346,     436,      46,      1;
6 :   16807,   19917,    8402,    1442,     87,     1;
7 :  262144,  341986,  173860,   41070,   4320,   162,   1;
8 : 4782969, 6713975, 3924685, 1166083, 176843, 12357, 303, 1;
    ...
		

Crossrefs

Row sums give A000312.
T(2n,n) gives A264903.

Programs

  • Maple
    S:= (n, k)-> `if`(k=0, n^n, add(binomial(n, i)*k*
                (k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k)):
    T:= (n, k)-> S(n, k)-S(n, k+1):
    seq(seq(T(n, k), k=0..max(0, n-1)), n=0..10);
  • Mathematica
    S[n_, k_] := If[k==0, n^n, Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}]]; T[n_, k_] := S[n, k]-S[n, k+1]; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, Max[0, n-1]}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)

Formula

T(n,k) = S(n,k) - S(n,k+1) with S(n,0) = n^n, S(n,k) = Sum_{i=0..n-k} C(n,i) * k*(k+i)^(i-1) * (n-k-i)^(n-i) for k>0.
Sum_{k>0} k * T(n,k) = A036276(n-1) for n>0.
Sum_{k>0} T(n,k) = A101334(n).
Sum_{k>=0} (-1)^k * T(n,k) = A274279(n) for n>=1.

A368982 Triangle read by rows: T(n, k) = binomial(n, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k) / 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 9, 3, 0, 0, 96, 36, 24, 0, 0, 1250, 480, 360, 270, 0, 0, 19440, 7500, 5760, 4860, 3840, 0, 0, 352947, 136080, 105000, 90720, 80640, 65625, 0, 0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0
Offset: 0

Views

Author

Peter Luschny, Jan 11 2024

Keywords

Examples

			Triangle starts:
  [0] [0]
  [1] [0,       0]
  [2] [0,       1,       0]
  [3] [0,       9,       3,       0]
  [4] [0,      96,      36,      24,       0]
  [5] [0,    1250,     480,     360,     270,       0]
  [6] [0,   19440,    7500,    5760,    4860,    3840,       0]
  [7] [0,  352947,  136080,  105000,   90720,   80640,   65625,       0]
  [8] [0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0]
		

Crossrefs

A368849, A369016 and this sequence are alternative sum representation for A001864 with different normalizations.
T(n, k) = A368849(n, k) / 2.
T(n, 1) = A081131(n) for n >= 1.
T(n, n - 1) = A081133(n - 2) for n >= 2.
Sum_{k=0..n} T(n, k) = A036276(n - 1) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) = A368981(n) / 2 for n >= 0.

Programs

  • Maple
    T := (n, k) -> binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)/2:
    seq(seq(T(n, k), k = 0..n), n=0..9);
  • Mathematica
    A368982[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k)/2; Table[A368982[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
  • SageMath
    def T(n, k): return binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)//2
    for n in range(0, 9): print([T(n, k) for k in range(n + 1)])

Formula

Showing 1-2 of 2 results.