cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036365 Number of chiral n-ominoes in n-2 space.

Original entry on oeis.org

0, 2, 6, 17, 49, 135, 361, 951, 2493, 6497, 16837, 43498, 112164, 288741, 742294, 1906552, 4893835, 12555662, 32201344, 82566738, 211675672, 542621858, 1390929877, 3565435302, 9139718572, 23430209922, 60069035611, 154014868677
Offset: 3

Views

Author

Keywords

Comments

a(n) is Lunnon's DR(n,n-2) - DE(n,n-2).

Examples

			0 chiral trominoes in 1-space;
2 pairs of chiral tetrominoes (L,S) in 2-space;
6 pairs of chiral pentominoes in 3-space.
		

Crossrefs

Programs

  • Mathematica
    sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1;
    c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
    c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ];
    Table[ c[ i, 3 ]/2+5c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]+If[ OddQ[ i ], 0,
    3c[ i/2, 2 ](-1)^(i/2)/8-If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ] ]
    +Sum[ c[ j, 1 ](c[ i-2j, 1 ]/2+c[ i-2j, 2 ]/4)(-1)^j, {j, 1, (i-1)/2} ], {i, 3, 30} ]

Formula

G.f.: C^3(x)/2 + C(x)C(-x^2)/2 + 5C^4(x)/8 + C^2(x)C(-x^2)/4 + 3C^2(-x^2)/8 - C(-x^4)/4 + C^5(x)/(1-C(x)), where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled (that is, C(x) is the g.f. of the sequence A045648).