cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355049 Number of chiral pairs of orthoplex n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

8, 76, 440, 2019, 8147, 30367, 107061, 361655, 1181761, 3762817, 11733393, 35957132, 108591703, 323914688, 955984083, 2795513143, 8108894051, 23354358683, 66838785954, 190211189706, 538567451991, 1517943035326
Offset: 7

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			a(7)=8 because there are 8 pairs of chiral heptominoes in 2^4 space. See trunks 1, 6, 8, 12, 13, 19, 27, and 28 in the linked Trunk Generating Functions.
		

Crossrefs

Cf. A355047 (oriented), A355048 (unoriented), A355050 (achiral) A355051 (asymmetric), A045648 (rooted chiral).
Other dimensions: A036368 (n-2), A045649 (n-1), A355054 (multidimensional).

Programs

  • Mathematica
    sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
    c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
    c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
    nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
    Drop[CoefficientList[Series[(14 K[x]^6 + 3 K[x]^7 + 6 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 18 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 10 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^3 (38 K[x]^4 + 9 K[x]^5 + 4 K[x]^2 K[-x^2] + 10 K[x]^3 K[-x^2] - 2 K[-x^2]^2 + K[x] K[-x^2]^2) / (8(1-K[x])) + K[x]^6 (5 K[x] + 16 K[x]^2 + 6 K[x]^3 + K[-x^2] + 2 K[x] K[-x^2]) / (2(1-K[x])^2) - K[-x^2]^2 (K[x]^4 + 2 K[x] K[-x^2] + 4 K[x]^2 K[-x^2] + 2 K[-x^2]^2 + 5 K[x] K[-x^2]^2 + K[-x^4] + K[x] K[-x^4]) / (4(1-K[-x^2])) + K[x]^7 (2 + 42 K[x] + 51 K[x]^2 + 24 K[x]^3 + 3 K[-x^2]) / (12(1-K[x])^3) + (K[x] K[x^3]^2) / (3(1-K[x^3])) - K[x]^2 K[-x^2]^2 (2 K[x] + 5 K[x]^3 + 2 K[-x^2] + K[x] K[-x^2]) / (4(1-K[x]) (1-K[-x^2])) - K[-x^2]^4 (8 + K[x] + 8 K[x] K[-x^2]) / (8(1-K[-x^2])^2) + K[x]^9 (17 + 8 K[x]) / (8(1-K[x])^4) - K[x]^5 (1 + 4 K[x]) K[-x^2]^2 / (4(1-K[x])^2 (1-K[-x^2])) + (K[x] K[-x^4]^2) / (4(1-K[-x^4])) + (3 K[x]^10) / (8(1-K[x])^5) - ((K[x]^6 K[-x^2]^2) / (4(1-K[x])^3 (1-K[-x^2]))) - (((1 + K[x]) K[-x^2]^5) / (4(1-K[-x^2])^3)) + ((1 + K[x]) K[-x^2] K[-x^4]^2) / (4(1-K[-x^2]) (1-K[-x^4])) - ((K[x]^2 K[-x^2]^4) / (8(1-K[x]) (1-K[-x^2])^2)), {x,0,nmax}], x], 7]

Formula

a(n) = A355047(n) - A355048(n) = (A355047(n) - A355050(n)) / 2 = A355048(n) - A355050(n).
G.f.: (14 C(x)^6 + 3 C(x)^7 + 6 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 18 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 10 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^3 (38 C(x)^4 + 9 C(x)^5 + 4 C(x)^2 C(-x^2) + 10 C(x)^3 C(-x^2) - 2 C(-x^2)^2 + C(x) C(-x^2)^2) / (8(1-C(x))) + C(x)^6 (5 C(x) + 16 C(x)^2 + 6 C(x)^3 + C(-x^2) + 2 C(x) C(-x^2)) / (2(1-C(x))^2) - C(-x^2)^2 (C(x)^4 + 2 C(x) C(-x^2) + 4 C(x)^2 C(-x^2) + 2 C(-x^2)^2 + 5 C(x) C(-x^2)^2 + C(-x^4) + C(x) C(-x^4)) / (4(1-C(-x^2))) + C(x)^7 (2 + 42 C(x) + 51 C(x)^2 + 24 C(x)^3 + 3 C(-x^2)) / (12(1-C(x))^3) + (C(x) C(x^3)^2) / (3(1-C(x^3))) - C(x)^2 C(-x^2)^2 (2 C(x) + 5 C(x)^3 + 2 C(-x^2) + C(x) C(-x^2)) / (4(1-C(x)) (1-C(-x^2))) - C(-x^2)^4 (8 + C(x) + 8 C(x) C(-x^2)) / (8(1-C(-x^2))^2) + C(x)^9 (17 + 8 C(x)) / (8(1-C(x))^4) - C(x)^5 (1 + 4 C(x)) C(-x^2)^2 / (4(1-C(x))^2 (1-C(-x^2))) + (C(x) C(-x^4)^2) / (4(1-C(-x^4))) + (3 C(x)^10) / (8(1-C(x))^5) - ((C(x)^6 C(-x^2)^2) / (4(1-C(x))^3 (1-C(-x^2)))) - (((1 + C(x)) C(-x^2)^5) / (4(1-C(-x^2))^3)) + ((1 + C(x)) C(-x^2) C(-x^4)^2) / (4(1-C(-x^2)) (1-C(-x^4))) - ((C(x)^2 C(-x^2)^4) / (8(1-C(x)) (1-C(-x^2))^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A355998 Number of fixed orthoplex n-ominoes with cell centers determining (n-2)-space.

Original entry on oeis.org

1, 48, 1728, 62720, 2457600, 105815808, 5017600000, 261227298816, 14860167413760, 918839084134400, 61439672177393700, 4421589120000000000, 340976534987475000000, 28064307240230900000000, 2456376885785930000000000
Offset: 4

Views

Author

Robert A. Russell, Jul 22 2022

Keywords

Comments

Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. Two fixed polyominoes are identical only if one is a translation of the other.

Examples

			For A(4)=1, all 4 squares of the 2^2 space are used.
		

Crossrefs

Cf. A171860 (multidimensional), A036367 (unoriented), A036368 (chiral), A036369 (asymmetric).
Diagonal 2 of A355997.

Programs

  • Mathematica
    Table[2^(n-3) n^(n-5) (n-2) (n-3)^2, {n,4,30}]

Formula

a(n) = 2^(n-3) * n^(n-5) * (n-2) * (n-3)^2.
a(n) ~ A171860(n) / 2.
Showing 1-2 of 2 results.