cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036386 Number of prime powers (p^2, p^3, ...) <= 2^n.

Original entry on oeis.org

0, 1, 2, 4, 7, 9, 13, 16, 20, 26, 31, 40, 50, 61, 78, 93, 119, 150, 189, 242, 310, 400, 525, 684, 900, 1190, 1581, 2117, 2836, 3807, 5136, 6948, 9425, 12811, 17437, 23788, 32517, 44512, 60971, 83640, 114899, 157948, 217336, 299360, 412635, 569193, 785753, 1085319, 1500140, 2074794, 2870849, 3974425, 5504966
Offset: 1

Views

Author

Keywords

Examples

			For n = 6, there are 9 prime powers not exceeding 2^6 = 64: 4, 8, 9, 16, 25, 27, 32, 49, 64, so a(6) = 9.
For n = 25, a(25) = 900, pi(5792) + pi(322) + pi(76) + pi(32) + pi(17) + pi(11) + pi(8) + pi(6) + pi(5) + pi(4) + pi(4) + pi(3) + pi(3) + pi(3) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(1) = 760 + 66 + 21 + 11 + 7 + 5 + 4 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 900.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Union@ Flatten@ Table[ Prime[j]^k, {k, 2, n + 1}, {j, PrimePi[2^(n/k)]}]; Array[f, 46] (* Robert G. Wilson v, Jul 08 2011 *)
  • Python
    from sympy import primepi, integer_nthroot
    def A036386(n):
        m = 1<Chai Wah Wu, Jan 23 2025

Formula

a(n) = Sum_{j=2..n+1} pi(floor(2^(n/j))). The summation starts with squares (j=2); for arbitrary range (=y), the y^(1/j) argument has to be used.

Extensions

More terms from Labos Elemer, May 07 2001
Terms a(47) and beyond from Hiroaki Yamanouchi, Nov 15 2016