cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A060967 Number of squared primes <= 2^n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 11, 14, 18, 24, 31, 42, 54, 72, 97, 128, 172, 229, 309, 418, 564, 760, 1028, 1393, 1900, 2585, 3512, 4792, 6542, 8952, 12251, 16777, 23000, 31579, 43390, 59631, 82025, 112957, 155611, 214516, 295947, 408493, 564163, 779638
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 8, the squared primes not exceeding 2^8 = 256 are 4, 9, 25, 49, 121, 169, so a(8) = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/2)//N ] ], {g, 1, 75} ]
  • PARI
    a(n) = { primepi(sqrtint(2^n)) } \\ Harry J. Smith, Jul 15 2009

Formula

a(2*n) = A007053(n). - Amiram Eldar, Jul 10 2024
a(n) = A000720(A017910(n)). - Amiram Eldar, Mar 22 2025

Extensions

a(0) prepended by Harry J. Smith, Jul 15 2009

A060969 Number of cubes of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 8, 9, 11, 12, 15, 18, 22, 26, 31, 37, 46, 54, 66, 79, 97, 117, 141, 172, 209, 257, 309, 376, 457, 564, 687, 842, 1028, 1266, 1549, 1900, 2327, 2861, 3512, 4323, 5320, 6542, 8072, 9936, 12251, 15104, 18640, 23000, 28428
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 10, the cubes of primes not exceeding 2^10 = 1024 are 8, 27, 125, 343, so a(10) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/3)//N ] ], {g, 0, 90} ]

Formula

a(3*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A017979(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A060970 Number of fourth powers of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 8, 8, 9, 11, 12, 14, 16, 18, 21, 24, 28, 31, 36, 42, 47, 54, 62, 72, 82, 97, 111, 128, 149, 172, 199, 229, 268, 309, 360, 418, 481, 564, 651, 760, 886, 1028, 1201, 1393, 1629, 1900, 2211, 2585, 3010, 3512, 4104, 4792
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 12, the 4th powers of prime not exceeding 2^12 = 4096 are 16, 81, 625, 2401, so a(12) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/4)//N ] ], {g, 0, 100} ]

Formula

a(4*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A018048(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A060971 Number of fifth powers of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9, 9, 11, 11, 13, 15, 16, 18, 21, 23, 25, 29, 31, 34, 39, 44, 47, 54, 62, 68, 76, 86, 97, 107, 122, 137, 154, 172, 193, 217, 244, 275, 309, 349, 393, 442, 499, 564, 635, 712, 807, 914, 1028, 1163, 1315, 1482
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 10: the 5th powers of primes not exceeding 2^10 = 1024 are 32 and 243, so a(10) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/5)//N ] ], {g, 0, 150} ]

Formula

a(5*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A018117(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A062762 Number of powerful numbers not exceeding 2^n.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 11, 18, 26, 38, 55, 80, 116, 166, 240, 345, 497, 710, 1016, 1453, 2073, 2955, 4211, 5992, 8523, 12111, 17202, 24423, 34648, 49152, 69694, 98795, 140009, 198378, 281016, 398002, 563612, 797999, 1129737, 1599166, 2263457, 3203381
Offset: 0

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Comments

Number of terms x from A001694 for which x <= 2^n.

Examples

			Below 128, the 18 powerful numbers {1,4,8,9,16,25,...,100,108,121,125,128} can be found, so a(7)=18.
		

Crossrefs

Programs

  • Mathematica
    nn = 41; s = Union@ Flatten@ Table[a^2*b^3, {b, (2^nn)^(1/3)}, {a, Sqrt[(2^nn)/b^3]}]; Table[FirstPosition[s, 2^k][[1]], {k, 2, nn}] (* Michael De Vlieger, Oct 29 2023 *)
  • PARI
    a(n) = my(s=0,N=2^n); forsquarefree(k=1, sqrtnint(N, 3), s += sqrtint(N\k[1]^3)); s; \\ Daniel Suteu, Feb 18 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A062762(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        m = 1<1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        return c-l # Chai Wah Wu, Sep 13 2024

Formula

a(n) = Sum_{k=0..n} A062761(k). - Daniel Suteu, Feb 18 2020

Extensions

a(19)-a(41) from Donovan Johnson, Oct 01 2009

A380402 Number of proper prime powers (in A246547) that do not exceed primorial A002110(n).

Original entry on oeis.org

0, 0, 1, 6, 14, 34, 75, 187, 551, 1954, 8317, 38582, 200978, 1125541, 6562122, 40444003, 266832233, 1870169623, 13424553758, 101495825622, 793832121165, 6325729776075, 52616754936494, 450157758564742, 3999323787879764, 37180986240914714, 353667558431662474
Offset: 0

Views

Author

Michael De Vlieger, Jan 23 2025

Keywords

Examples

			Let s = A246547.
a(0) = a(1) = 0 since P(0) = 1 and P(1) = 2, and the smallest number in s is 4.
a(2) = 1 since P(2) = 6, and s(1) = 4 is the only term in s <= 6.
a(3) = 6 since P(3) = 30, and the set s(1..6) = {4, 8, 9, 16, 25, 27} contains k <= 30.
a(4) = 14 since P(4) = 210, and the set s(1..14) = {4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169} contains k <= 210, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[PrimePi@ Floor[#^(1/k)], {k, 2, Floor@ Log2[#]}] &[Product[Prime[i], {i, n}]], {n, 0, nn}]
  • Python
    from sympy import primorial, primepi, integer_nthroot
    def A380402(n):
        if n == 0: return 0
        m = primorial(n)
        return int(sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))) # Chai Wah Wu, Jan 24 2025

Formula

a(n) = Sum_{k=2..floor(log_2(P(n)))} pi(floor(P(n)^(1/k))), where P(n) = A002110(n).

Extensions

a(24) corrected by Chai Wah Wu, Jan 25 2025
a(26) from Jinyuan Wang, Feb 25 2025

A036380 Number of true prime powers whose binary order, ceiling(log_2(p^x)), is n.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 4, 3, 4, 6, 5, 9, 10, 11, 17, 15, 26, 31, 39, 53, 68, 90, 125, 159, 216, 290, 391, 536, 719, 971, 1329, 1812, 2477, 3386, 4626, 6351, 8729, 11995, 16459, 22669, 31259, 43049, 59388, 82024, 113275, 156558, 216560, 299566, 414821, 574654
Offset: 1

Views

Author

Keywords

Examples

			There are 5 prime powers between 2^10 + 1 = 1025 and 2^11 = 2048 (inclusive): 1331 = 11^3, 1369 = 37^2, 1681 = 41^2, 1849 = 43^2, and 2048 = 2^11, so a(11) = 5.
		

Crossrefs

Programs

  • Mathematica
    t=Table[Length[Union[Flatten[Table[Table[Prime[w]^s, {w, 1, PrimePi[2^(n/s)]}], {s, 2, g+1}]]] ], {n, 1, 42}]; Delete[t-RotateRight[t], 1]

Formula

a(n) = A036386(n) - A036386(n-1) for n >= 2. - Amiram Eldar, Mar 22 2025

Extensions

More terms from Sean A. Irvine, Oct 29 2020

A372403 Number of k < 2^n that are neither squarefree nor prime powers.

Original entry on oeis.org

1, 5, 16, 37, 83, 178, 374, 772, 1565, 3160, 6361, 12770, 25599, 51265, 102634, 205374, 410873, 821924, 1644070, 3288433, 6577231, 13154868, 26310347, 52621521, 105244142, 210489792, 420981295, 841964929, 1683933254, 3367871086, 6735748322, 13471504796, 26943020642
Offset: 4

Views

Author

Michael De Vlieger, Jun 09 2024

Keywords

Comments

Analogous to A143658 (number of squarefree k <= 2^n) and A182908 (position of 2^n among prime powers A246655).

Examples

			Let quality Q represent a number k that is neither squarefree nor prime power. For instance, Q(k) is true if and only if Omega(k) > omega(k) > 1, i.e., A001222(k) > A001221(k) > 1.
a(4) = 1 since there is one number k = 12 such that Q(k) is true; 12 < 2^4.
a(5) = 5 since there are 5 numbers k such that Q(k) is true; {12, 18, 20, 24, 28} are less than 2^5.
a(6) = 16 since A126706(16) < 2^6 < A126706(17), etc.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F) > 1 and max(F[..,2]) > 1
    end proc:
    R:= NULL: v:= 0:
    for i from 4 to 20 do
      v:= v + nops(select(filter, [$2^(i-1)+1 .. 2^i-1]));
      R:= R,v;
    od:
    R; # Robert Israel, Jun 09 2024
  • Mathematica
    Table[2^n - Sum[PrimePi@Floor[2^(n/k)], {k, 2, n}] - Sum[MoebiusMu[k]*Floor[#/(k^2)], {k, Floor[Sqrt[#]]}] &[2^n], {n, 4, 36} ] (* Michael De Vlieger, Jan 24 2025 *)
  • Python
    from math import isqrt
    from sympy import mobius, nextprime, integer_log
    def A372403(n):
        m, p = (1<Chai Wah Wu, Jun 10 2024

Formula

a(n) = 2^n - A036386(n) - A143658(n). - Michael De Vlieger, Jan 24 2025

Extensions

a(30) onwards from Chai Wah Wu, Jun 10 2024

A062761 Number of powerful numbers between 2^(n-1)+1 and 2^n.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 3, 7, 8, 12, 17, 25, 36, 50, 74, 105, 152, 213, 306, 437, 620, 882, 1256, 1781, 2531, 3588, 5091, 7221, 10225, 14504, 20542, 29101, 41214, 58369, 82638, 116986, 165610, 234387, 331738, 469429, 664291, 939924, 1329876, 1881500, 2661826, 3765629
Offset: 0

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Examples

			64 < {72,81,100,108,121,125,128} <= 128, i.e., 7 powerful numbers are between 2^6 and 2^7, so a(7)=7.
		

Crossrefs

Programs

  • PARI
    a(n) = my(ka = if (n==0, 1, 2^(n-1)+1)); #select(x->ispowerful(x), [ka..2^n]); \\ Michel Marcus, Aug 25 2019
    
  • PARI
    Q(n) = my(s=0); forsquarefree(k=1, sqrtnint(n, 3), s += sqrtint(n\k[1]^3)); s;
    a(n) = if(n==0, 1, Q(2^n) - Q(2^(n-1))); \\ Daniel Suteu, Feb 18 2020
    
  • Python
    # uses code from A062762
    def A062761(n): return A062762(n)-A062762(n-1) if n else 1 # Chai Wah Wu, Sep 13 2024

Formula

Number of terms x from A001694 for which A029837(x)=n.
Sum_{k=0..n} a(k) = A062762(n). - Daniel Suteu, Feb 18 2020

Extensions

a(19)-a(29) from Daniel Suteu, Aug 25 2019
a(30)-a(45) from Daniel Suteu, Feb 18 2020

A380431 Number of powerful numbers that are not powers of primes (i.e. are in A286708) that do not exceed 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 9, 17, 28, 48, 75, 115, 178, 266, 403, 590, 865, 1263, 1830, 2644, 3810, 5466, 7838, 11210, 16011, 22841, 32530, 46315, 65886, 93658, 133060, 188952, 268204, 380564, 539823, 765481, 1085224, 1538194, 2179816, 3088481, 4375308, 6197420, 8777222
Offset: 0

Views

Author

Michael De Vlieger, Jan 24 2025

Keywords

Examples

			Let s = A286708 = A001694 \ A246547 \ {1}.
a(0..5) = 0 since the smallest number in s is 36.
a(6) = 1 since only s(1) = 36 is smaller than 2^6 = 64.
a(7) = 4 since s(1..4) = {36, 72, 100, 108} are smaller than 2^7 = 128.
a(8) = 9 since s(1..9) = {36, 72, 100, 108, 144, 196, 200, 216, 225} are smaller than 2^8 = 256, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[-1 + Sum[If[MoebiusMu[j] != 0, Floor[Sqrt[(2^n)/j^3]], 0], {j, 2^(n/3)}] - Sum[PrimePi@ Floor[2^(n/k)], {k, 2, n}], {n, 0, 45} ]
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primepi
    def A380431(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        l, m = 0, 1<1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        return c-l # Chai Wah Wu, Jan 30 2025

Formula

a(n) = A062762(n) - A036386(n) - 1.
a(n) <= A372403(n), since A286708 is a proper subset of A126706.
Showing 1-10 of 10 results.