cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A380254 Number of powerful numbers (in A001694) that do not exceed primorial A002110(n).

Original entry on oeis.org

1, 1, 2, 7, 22, 85, 330, 1433, 6450, 31555, 172023, 964560, 5891154, 37807505, 248226019, 1702890101, 12401685616, 95277158949, 744210074157, 6091922351106, 51332717836692, 438592279944173, 3898316990125822, 35515462315592564, 335052677538616216, 3299888425002527366
Offset: 0

Views

Author

Michael De Vlieger, Jan 19 2025

Keywords

Comments

In other words, A001694(a(n)) is the largest powerful number less than or equal to A002110(n).

Examples

			Let P = A002110 and let s = A001694.
a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1.
a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2.
a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6.
a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30.
a(4) = 22 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200} contains k <= 210, etc.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Sum[If[SquareFreeQ[ii], Floor[Sqrt[x/ii^3]], 0], {ii, x^(1/3)}];
    Table[f[#[[k + 1]]], {k, 0, Length[#] - 1}] &[
      FoldList[Times, 1, Prime[Range[12] ] ] ] (* function f after Robert G. Wilson v at A118896 *)
  • Python
    from math import isqrt
    from sympy import primorial, integer_nthroot, mobius
    def A380254(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        if n == 0: return 1
        m = primorial(n)
        c, l, j = squarefreepi(integer_nthroot(m, 3)[0]), 0, isqrt(m)
        while j>1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        return c-l # Chai Wah Wu, Jan 24 2025

Extensions

a(18)-a(25) from Chai Wah Wu, Jan 24 2025

A062761 Number of powerful numbers between 2^(n-1)+1 and 2^n.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 3, 7, 8, 12, 17, 25, 36, 50, 74, 105, 152, 213, 306, 437, 620, 882, 1256, 1781, 2531, 3588, 5091, 7221, 10225, 14504, 20542, 29101, 41214, 58369, 82638, 116986, 165610, 234387, 331738, 469429, 664291, 939924, 1329876, 1881500, 2661826, 3765629
Offset: 0

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Examples

			64 < {72,81,100,108,121,125,128} <= 128, i.e., 7 powerful numbers are between 2^6 and 2^7, so a(7)=7.
		

Crossrefs

Programs

  • PARI
    a(n) = my(ka = if (n==0, 1, 2^(n-1)+1)); #select(x->ispowerful(x), [ka..2^n]); \\ Michel Marcus, Aug 25 2019
    
  • PARI
    Q(n) = my(s=0); forsquarefree(k=1, sqrtnint(n, 3), s += sqrtint(n\k[1]^3)); s;
    a(n) = if(n==0, 1, Q(2^n) - Q(2^(n-1))); \\ Daniel Suteu, Feb 18 2020
    
  • Python
    # uses code from A062762
    def A062761(n): return A062762(n)-A062762(n-1) if n else 1 # Chai Wah Wu, Sep 13 2024

Formula

Number of terms x from A001694 for which A029837(x)=n.
Sum_{k=0..n} a(k) = A062762(n). - Daniel Suteu, Feb 18 2020

Extensions

a(19)-a(29) from Daniel Suteu, Aug 25 2019
a(30)-a(45) from Daniel Suteu, Feb 18 2020

A380431 Number of powerful numbers that are not powers of primes (i.e. are in A286708) that do not exceed 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 9, 17, 28, 48, 75, 115, 178, 266, 403, 590, 865, 1263, 1830, 2644, 3810, 5466, 7838, 11210, 16011, 22841, 32530, 46315, 65886, 93658, 133060, 188952, 268204, 380564, 539823, 765481, 1085224, 1538194, 2179816, 3088481, 4375308, 6197420, 8777222
Offset: 0

Views

Author

Michael De Vlieger, Jan 24 2025

Keywords

Examples

			Let s = A286708 = A001694 \ A246547 \ {1}.
a(0..5) = 0 since the smallest number in s is 36.
a(6) = 1 since only s(1) = 36 is smaller than 2^6 = 64.
a(7) = 4 since s(1..4) = {36, 72, 100, 108} are smaller than 2^7 = 128.
a(8) = 9 since s(1..9) = {36, 72, 100, 108, 144, 196, 200, 216, 225} are smaller than 2^8 = 256, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[-1 + Sum[If[MoebiusMu[j] != 0, Floor[Sqrt[(2^n)/j^3]], 0], {j, 2^(n/3)}] - Sum[PrimePi@ Floor[2^(n/k)], {k, 2, n}], {n, 0, 45} ]
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primepi
    def A380431(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        l, m = 0, 1<1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        return c-l # Chai Wah Wu, Jan 30 2025

Formula

a(n) = A062762(n) - A036386(n) - 1.
a(n) <= A372403(n), since A286708 is a proper subset of A126706.

A382790 a(n) is the (2^n)-th powerful number.

Original entry on oeis.org

1, 4, 9, 32, 121, 392, 1352, 5000, 18432, 69192, 265837, 1024144, 3968064, 15523600, 60972500, 240413400, 950612224, 3767130288, 14959246864, 59495990724, 236902199076, 944193944097, 3765996039168, 15029799230264, 60010866324576, 239700225078125, 957712290743329
Offset: 0

Views

Author

Amiram Eldar, Apr 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{p = Union@ Flatten@ Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]}, p[[2^Range[0, Floor[Log2[Length[p]]]]]]]; seq[10^12]

Formula

a(n) = A001694(2^n).
a(n) ~ c * 4^n, where c = (zeta(3)/zeta(3/2))^2 = 1/A090699^2.
Showing 1-4 of 4 results.