A036431 a(n) = number of positive integers b which, when added to the number of their divisors, tau(b), gives n.
0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 2, 0, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 1, 1, 0, 0, 1, 3, 2, 0, 0, 1, 2, 0, 2, 0, 0, 1, 1, 3, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 2, 1, 1, 0, 1, 0, 0, 3, 0, 1, 1, 2, 2, 1, 0, 0, 2, 0, 0, 3, 1, 0, 1, 1, 3, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 1, 2, 2, 0, 0, 1, 1, 1, 2
Offset: 1
Keywords
Examples
a(7) = 2 because (i) 4+tau(4)=7 and (ii) 5+tau(5)=7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- S. Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999, #2.
- S. Colton, HR - Automatic Theory Formation in Pure Mathematics
Crossrefs
Cf. A036432.
Programs
-
Maple
N:= 200: # to get a(1)..a(N) A:= Vector(N): for b from 1 to N do v:= b + numtheory:-tau(b); if v <= N then A[v]:= A[v]+1 fi od: convert(A,list); # Robert Israel, Jun 10 2018
-
PARI
a(n) = sum(i=1, n, i+numdiv(i) == n); \\ Michel Marcus, Oct 01 2021
Formula
a(n) = |{b in N : b + tau(b) = n}|
Extensions
a(87)=0 corrected by Michel Marcus, Aug 31 2013
Comments