A036442 a(n) = 2^((n-1)*(n+2)/2).
1, 4, 32, 512, 16384, 1048576, 134217728, 34359738368, 17592186044416, 18014398509481984, 36893488147419103232, 151115727451828646838272, 1237940039285380274899124224, 20282409603651670423947251286016, 664613997892457936451903530140172288
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..80
- P. Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161, 2013 and J. Int. Seq. 17 (2014) # 14.5.1
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116.
- C. Lo and C. Chiu, A Fault-Tolerant Architecture for ATM Networks, 20th IEEE Conf. Local Computer Networks, 1995, pp. 29-36
- Index to divisibility sequences
Programs
-
Magma
I:=[1]; [n le 1 select I[n] else Self(n-1)*2^n: n in [1..20]]; // Vincenzo Librandi, Oct 24 2012
-
Mathematica
Table[2^((n-1) * (n+2)/2), {n, 1, 30}] (* Vincenzo Librandi, Oct 24 2012 *)
-
Maxima
A036442[n]:=2^((n-1)*(n+2)/2)$ makelist(A036442[n],n,1,30); /* Martin Ettl, Oct 29 2012 */
-
PARI
a(n)=2^((n-1)*(n+2)/2) \\ Charles R Greathouse IV, Oct 24 2012
Formula
a(1) = 1, a(n) = a(n-1) * 2^n. - Vincenzo Librandi, Oct 24 2012
Comments