A036450 a(n) = d(d(d(n))), the 3rd iterate of the number-of-divisors function with an initial value of n.
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 2, 3, 3, 2, 2, 3, 2, 3, 3
Offset: 1
Keywords
Examples
n = 5040, d(5040) = 60, d(d(5040)) = d(60) = 12 and a(5040) = d(12) = 6.
References
- S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. 128. - N. J. A. Sloane, Jun 02 2014
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..2000
- R. Bellman and H. N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340.
Programs
-
Mathematica
f[n_]:=Length[Divisors[n]];Table[Nest[f,n,3],{n,6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *)
-
PARI
a(n)=numdiv(numdiv(numdiv(n))) \\ Charles R Greathouse IV, Nov 16 2022
-
Python
from sympy import divisor_count def A036450(n): return divisor_count(divisor_count(divisor_count(n))) # Chai Wah Wu, Nov 17 2022
Comments