A036458 For all n, if d is recursively applied to a(n) exactly 6 times then the fixed point of d-iteration is just reached.
5040, 7920, 8400, 9360, 10080, 10800, 11088, 11340, 11760, 12240, 12600, 12960, 13104, 13200, 13680, 13860, 15600, 15840, 16200, 16380, 16560, 16800, 17136, 17640, 17820, 18000, 18144, 18720, 18900, 19152, 19440, 19800, 20160, 20400, 20592, 20880, 21060, 21168
Offset: 1
Keywords
Examples
a(1)=5040 and the nested d functions are 60,12,6,4,3 and the 6th is 2. a(5)=10080 and iterating d with 10080 initial value, after 6 iterations the convergence takes place through 72,12,6,4,3 transients, i.e., 2 is reached on the 6th step.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
draQ[n_]:=Length[FixedPointList[DivisorSigma[0,#]&,n,7]]==8; Select[ Range[ 21000],draQ] (* Harvey P. Dale, Mar 06 2015 *)
-
PARI
is(n)=for(i=1,5,n=numdiv(n); if(n<3, return(0))); numdiv(n)==2 \\ Charles R Greathouse IV, Sep 17 2015
Formula
A036459(a(n)) = 6. - Ivan Neretin, Jan 25 2016
Comments