cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036491 Transformation of A036490: 5^a*7^b*11^c -> 5^a*7^floor((b+2)/2)*11^c.

Original entry on oeis.org

5, 7, 11, 25, 35, 49, 55, 77, 121, 125, 175, 245, 275, 49, 385, 539, 605, 625, 847, 875, 1225, 1331, 1375, 245, 1925, 343, 2695, 3025, 3125, 539, 4235, 4375, 5929, 6125, 6655, 6875, 1225, 9317, 9625, 1715, 13475, 14641, 15125, 15625, 343, 2695, 21175
Offset: 1

Views

Author

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 160.

Crossrefs

Programs

  • Haskell
    a036491 n = f z z where
       f x y | x `mod` 2401 == 0 = f (x `div` 49) (y `div` 7)
             | x `mod` 343 == 0  = y `div` 7
             | otherwise         = y
       z = a036490 n
    -- Reinhard Zumkeller, Feb 19 2013
  • Mathematica
    f[pp_(*primes*), max_(*maximum term*)] := Module[{a, aa, k, iter}, k = Length[pp]; aa = Array[a, k]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; A036490 = f[{5, 7, 11}, 2*10^14] // Rest; a[n_] := (a0 = A036490[[n]]; b = Max[1, IntegerExponent[a0, 7]]; 7^(Floor[(b+2)/2]-b) * a0); Table[a[n], {n, 1, Length[A036490]}]; (* Jean-François Alcover, Sep 19 2012, updated Nov 12 2016 *)

Extensions

Offset corrected by Reinhard Zumkeller, Feb 19 2013