A036542 a(n) = T(n, n), array T given by A047858.
1, 3, 11, 34, 93, 236, 571, 1338, 3065, 6904, 15351, 33782, 73717, 159732, 344051, 737266, 1572849, 3342320, 7077871, 14942190, 31457261, 66060268, 138412011, 289406954, 603979753, 1258291176, 2617245671, 5435817958, 11274289125, 23353884644, 48318382051
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Programs
-
Mathematica
LinearRecurrence[{6,-13,12,-4},{1,3,11,34},40] (* Harvey P. Dale, Jul 21 2024 *)
-
PARI
Vec((1-3*x+6*x^2-5*x^3)/((1-x)^2*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Feb 20 2016
Formula
a(n) = 3*n * 2^(n-1) - n + 1.
From Colin Barker, Feb 20 2016: (Start)
a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4) for n>3.
G.f.: (1-3*x+6*x^2-5*x^3) / ((1-x)^2*(1-2*x)^2).
(End)