A036668 Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1.
1, 4, 5, 6, 7, 9, 11, 13, 16, 17, 19, 20, 23, 24, 25, 28, 29, 30, 31, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 52, 53, 54, 55, 59, 61, 63, 64, 65, 66, 67, 68, 71, 73, 76, 77, 78, 79, 80, 81, 83, 85, 89, 91, 92, 95, 96, 97, 99, 100, 101, 102, 103, 107
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Don McDonald, Obituary of Alan Robert Boyd, posted to sci.math Jan 02 1999; alternative link.
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms up to N A:= {seq(2^i,i=0..ilog2(N))}: Ae,Ao:= selectremove(issqr,A): Be:= map(t -> seq(t*9^j, j=0 .. floor(log[9](N/t))),Ae): Bo:= map(t -> seq(t*3*9^j,j=0..floor(log[9](N/(3*t)))),Ao): B:= Be union Bo: C1:= map(t -> seq(t*(6*i+1),i=0..floor((N/t -1)/6)),B): C2:= map(t -> seq(t*(6*i+5),i=0..floor((N/t - 5)/6)),B): A036668:= C1 union C2; # Robert Israel, May 09 2014
-
Mathematica
a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}], IntegerQ]]] &]], {150}]; a (* A036668 *) (* Peter J. C. Moses, Apr 23 2019 *)
-
PARI
twos(n) = {local(r,m);r=0;m=n;while(m%2==0,m=m/2;r++);r} threes(n) = {local(r,m);r=0;m=n;while(m%3==0,m=m/3;r++);r} isA036668(n) = (twos(n)+threes(n))%2==0 \\ Michael B. Porter, Mar 16 2010
-
PARI
is(n)=(valuation(n,2)+valuation(n,3))%2==0 \\ Charles R Greathouse IV, Sep 10 2015
-
PARI
list(lim)=my(v=List(),N);for(n=0,logint(lim\=1,3),N=if(n%2,2*3^n,3^n); while(N<=lim, forstep(k=N,lim,[4*N,2*N], listput(v,k)); N<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 10 2015
-
Python
from itertools import count def A036668(n): def f(x): c = n+x for i in range(x.bit_length()+1): i2 = 1<x: break m = x//k c -= (m-1)//6+(m-5)//6+2 return c m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jan 28 2025
Formula
a(n) = 12/7 * n + O(log^2 n). - Charles R Greathouse IV, Sep 10 2015
{a(n)} = A052330({A014601(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Sep 14 2019
Extensions
Offset changed by Chai Wah Wu, Jan 28 2025
Comments