cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217925 G.f. A(x) satisfies A(x) = 1 + x*A(x)*A(x^2)^2.

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 19, 40, 77, 155, 306, 610, 1207, 2400, 4760, 9456, 18765, 37257, 73955, 146813, 291434, 578524, 1148434, 2279720, 4525487, 8983421, 17832976, 35399824, 70271944, 139495472, 276910976, 549691232, 1091185133, 2166094309, 4299884233, 8535634803, 16943967775
Offset: 0

Views

Author

Joerg Arndt, Oct 15 2012

Keywords

Comments

What does this sequence count?

Crossrefs

Cf. A000108 (A(x) = 1 + x*A(x)^2), A000621 (A(x) = 1 + x*A(x)*A(x^2)).
Cf. A036675 (A(x) = 1 + x*A(x)^2*A(x^2)), A101913 (A(x) = 1 + x*A(x)*A(x^3); for abs. values).

Programs

  • Maxima
    T(n,m):=if n=m then 1 else sum(binomial(m+k-1,k)*T((n-m)/2,2*k),k,1,(n-m)/4);
    makelist(T(4*n+1,1),n,0,25); /* Vladimir Kruchinin, Mar 25 2015 */
  • PARI
    N=66;  R=O('x^N);  x='x+R;
    F = 1 + x;
    { for (k=1,N+1, F = 1 + x * F * subst(F,'x,'x^2)^2 + R; ); }
    Vec(F+O('x^N))
    

Formula

a(n) ~ c * d^n, where d = 1.985085392419660786124534041173530134614822710253953085885966352..., c = 0.322822740100478716884116064042886830242825005622702339543369128... . - Vaclav Kotesovec, Aug 10 2014
a(n) = T(4*n+1,1), where T(n,m) = Sum_{k=1..(n-m)/4} C(m+k-1,k)*T((n-m)/2,2*k). - Vladimir Kruchinin, Mar 25 2015
Showing 1-1 of 1 results.