A036702 a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b<=a.
1, 2, 4, 7, 10, 15, 20, 25, 32, 40, 49, 57, 66, 78, 89, 102, 114, 128, 142, 158, 175, 190, 209, 227, 245, 267, 288, 310, 331, 354, 379, 402, 429, 455, 483, 512, 538, 569, 597, 631, 663, 693, 727, 761, 798, 834, 868, 906, 943, 983
Offset: 0
Programs
-
Maple
A036702 := proc(n) local a,x,y ; a := 0 ; for x from 0 do if x^2 > n^2 then return a; fi ; for y from 0 to x do if y^2+x^2 <= n^2 then a := a+1 ; end if; end do; end do: end proc: # R. J. Mathar, Oct 29 2011
-
Mathematica
a[n_] := Module[{a, b}, If[n == 0, 1, Reduce[a^2 + b^2 <= n^2 && a >= 0 && 0 <= b <= a, {a, b}, Integers] // Length]]; a /@ Range[0, 49] (* Jean-François Alcover, Oct 17 2019 *)
Formula
a(n) = sum(floor(sqrt(n^2 - m^2)) - (m-1), m = 0.. floor(n/sqrt(2))), n >= 0. See A255250. - Wolfdieter Lang, Mar 15 2015
Comments