cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A192710 T(i,j,k) = Number of i X j integer matrices with each row summing to zero, row elements in nondecreasing order, rows in lexicographically nondecreasing order, and the sum of squares of the elements <= 2*k^2 (number of sets of i zero-sum j-vectors with total modulus squared not more than 2*k^2, ignoring vector and component permutations), 3d array by constant coordinate sum planes: (((T(i+1,j+1,s-i-j+1), j=0..s-i), i=0..s), s=0..infinity).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4, 5, 2, 1, 4, 2, 1, 2, 1, 1, 5, 8, 6, 2, 1, 7, 8, 2, 1, 5, 2, 1, 2, 1, 1, 6, 13, 15, 8, 2, 1, 10, 20, 11, 2, 1, 10, 9, 2, 1, 6, 2, 1, 2, 1, 1, 7, 18, 26, 21, 9, 2, 1, 15, 54, 48, 13, 2, 1, 16, 36, 13, 2, 1, 12, 10, 2, 1, 6, 2, 1, 2, 1, 1, 8, 25, 45, 48, 28, 9, 2, 1, 20, 104
Offset: 1

Views

Author

R. H. Hardin Jul 07 2011

Keywords

Examples

			Some solutions for n=245, T(3,4,6)
.-3..1..1..1...-5..0..0..5...-5..0..2..3...-4..1..1..2...-5.-1..3..3
.-2.-2..1..3...-2.-1..1..2...-3.-1..2..2...-2.-2..0..4...-1.-1.-1..3
.-2.-1.-1..4...-2..0..1..1...-2.-2..2..2...-2.-1..1..2...-1.-1.-1..3
		

Crossrefs

Column T(1,3,n) is A000982(n+1).
Column T(2,2,n) is A036702(n).

A000603 Number of nonnegative solutions to x^2 + y^2 <= n^2.

Original entry on oeis.org

1, 3, 6, 11, 17, 26, 35, 45, 58, 73, 90, 106, 123, 146, 168, 193, 216, 243, 271, 302, 335, 365, 402, 437, 473, 516, 557, 600, 642, 687, 736, 782, 835, 886, 941, 999, 1050, 1111, 1167, 1234, 1297, 1357, 1424, 1491, 1564, 1636, 1703, 1778, 1852, 1931, 2012, 2095
Offset: 0

Views

Author

Keywords

Comments

Row sums of triangle A255238. - Wolfdieter Lang, Mar 15 2015

References

  • H. Gupta, A Table of Values of N_3(t), Proc. National Institute of Sciences of India, 13 (1947), 35-63.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A302998.

Programs

  • Haskell
    a000603 n = length [(x,y) | x <- [0..n], y <- [0..n], x^2 + y^2 <= n^2]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Mathematica
    Table[cnt = 0; Do[If[x^2 + y^2 <= n^2, cnt++], {x, 0, n}, {y, 0, n}]; cnt, {n, 0, 51}] (* T. D. Noe, Apr 02 2013 *)
    Table[If[n==1,1,2*Sum[Sum[A255195[[n, n - k + 1]], {k, 1, k}], {k, 1, n}] - Ceiling[(n - 1)/Sqrt[2]]],{n,1,52}] (* Mats Granvik, Feb 19 2015 *)
  • PARI
    a(n)=my(n2=n^2);sum(a=0,n,sqrtint(n2-a^2)+1) \\ Charles R Greathouse IV, Apr 03 2013
    
  • Python
    from math import isqrt
    def A000603(n): return (m:=n<<1)+sum(isqrt(k*(m-k)) for k in range(1,n))+1 # Chai Wah Wu, Jul 18 2024

Formula

a(n) = n^2 * Pi/4 + O(n). - Charles R Greathouse IV, Apr 03 2013
a(n) = A001182(n) + 2*n + 1. - R. J. Mathar, Jan 07 2015
a(n) = 2*A026702(n) - (1 + floor(n/sqrt(2))), n >= 0. - Wolfdieter Lang, Mar 15 2015
a(n) = [x^(n^2)] (1 + theta_3(x))^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

Extensions

More terms from David W. Wilson, May 22 2000

A036700 Number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b

Original entry on oeis.org

0, 1, 2, 4, 7, 11, 15, 20, 26, 33, 41, 49, 57, 68, 79, 91, 102, 115, 129, 144, 160, 175, 193, 210, 228, 249, 269, 290, 311, 333, 357, 380, 406, 431, 458, 487, 512, 542, 570, 603, 634, 664, 697, 730, 766, 802, 835, 872, 909, 948, 988
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A036700 := proc(n)
            local a,x,y ;
            a := 0 ;
            for x from 0 do
                    if x^2 > n^2 then
                            return a;
                    fi ;
                    for y from 0 to x-1 do
                            if y^2+x^2 <= n^2 then
                                    a := a+1 ;
                            end if;
                    end do;
            end do:
    end proc: # R. J. Mathar, Oct 29 2011

Formula

Partial sums of A036701. - Sean A. Irvine, Nov 22 2020

A255250 Array T(n, m) of numbers of points of a square lattice in the first octant covered by a circular disk of radius n (centered at any lattice point taken as origin) with ordinate y = m.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 6, 4, 3, 2, 7, 5, 4, 3, 1, 8, 6, 5, 4, 2, 9, 7, 6, 5, 3, 2, 10, 8, 7, 6, 5, 3, 1, 11, 9, 8, 7, 6, 4, 3, 1, 12, 10, 9, 8, 7, 5, 4, 2, 13, 11, 10, 9, 8, 6, 5, 3, 1, 14, 12, 11, 10, 9, 8, 6, 4, 3, 1, 15, 13, 12, 11, 10, 9, 7, 6, 4, 2, 16, 14, 13, 12, 11, 10, 8, 7, 5, 4, 2
Offset: 0

Views

Author

Wolfdieter Lang, Mar 14 2015

Keywords

Comments

The row length of this array (irregular triangle) is 1 + flpoor(n/sqrt(2)) = 1 + A049472(n) = 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 10, 11, ...
This entry is motivated by the proposal A255195 by Mats Granvik, who gave the first differences of this array.
See the MathWorld link on Gauss's circle problem.
The first octant of a square lattice (x, y) with n = x >= y = m >= 0 is considered. The number of lattice points in this octant covered by a circular disk of radius R = n around the origin having ordinate value y = m are denoted by T(n, m), for n >= 0 and m = 0, 1, ..., floor(n/sqrt(2)).
The row sums give RS(n) = A036702(n), n >= 0. This is the total number of square lattice points in the first octant covered by a circular disk of radius R = n.
The alternating row sums give A256094(n), n >= 0.
The total number of square lattice points in the first quadrant covered by a circular disk of radius R = n is therefore 2*RS(n) - (1 + floor(n/sqrt(2))) = A000603(n).

Examples

			The array (irregular triangle) T(n, m) begins:
n\m  0  1  2  3  4  5 6 7 8 9 10 ....
0:   1
1:   2
2:   3  1
3:   4  2  1
4:   5  3  2
5:   6  4  3  2
6:   7  5  4  3  1
7:   8  6  5  4  2
8:   9  7  6  5  3  2
9:  10  8  7  6  5  3 1
10: 11  9  8  7  6  4 3 1
11: 12 10  9  8  7  5 4 2
12: 13 11 10  9  8  6 5 3 1
13: 14 12 11 10  9  8 6 4 3 1
14: 15 13 12 11 10  9 7 6 4 2
15: 16 14 13 12 11 10 8 7 5 4  2
...
		

Crossrefs

Formula

T(n, m) = floor(sqrt(n^2 - m^2)) - (m-1), n >= 0, m = 0, 1, ..., floor(n/sqrt(2)).
Showing 1-4 of 4 results.