A036763 Numbers k such that k*d(x) = x has no solution for x, where d (A000005) is the number of divisors; sequence gives impossible x/d(x) quotients in order of magnitude.
18, 27, 30, 45, 63, 64, 72, 99, 105, 112, 117, 144, 153, 160, 162, 165, 171, 195, 207, 225, 243, 252, 255, 261, 279, 285, 288, 294, 320, 333, 336, 345, 352, 360, 369, 387, 396, 405, 416, 423, 435, 441, 465, 468, 477, 490, 504, 531, 544, 549, 555, 567, 576
Offset: 1
Keywords
Examples
No natural number x exists for which x = 18*d(x), so 18 is a term.
References
- P. Erdős and J. Suranyi, Selected Topics in Number Theory, Tankonyvkiado, Budapest, 1960 (in Hungarian).
- P. Erdős and J. Suranyi, Selected Topics in Number Theory, Springer, New York, 2003 (in English).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..5000
Programs
-
Haskell
a036763 n = a036763_list !! (n-1) a036763_list = filter ((== 0) . a051521) [1..] -- Reinhard Zumkeller, Dec 28 2011
-
Maple
with(numtheory): A036763 := proc(n) local k,p: for k from 1 to 4*n^2 do p:=n*k: if(p=n*tau(p))then return NULL: fi: od: return n: end: seq(A036763(n),n=1..100); # Nathaniel Johnston, May 04 2011
-
Mathematica
noSolQ[n_] := !AnyTrue[Range[4*n^2], # == DivisorSigma[0, n*#]& ]; Reap[Do[If[noSolQ[n], Print[n]; Sow[n]], {n, 600}]][[2, 1]] (* Jean-François Alcover, Jan 30 2018 *)
Extensions
Definition corrected by N. J. A. Sloane, May 18 2022 at the suggestion of David James Sycamore.
Comments