cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036832 Schoenheim bound L_1(n,5,4).

Original entry on oeis.org

1, 5, 9, 18, 26, 50, 66, 113, 149, 219, 273, 397, 476, 659, 787, 1028, 1197, 1549, 1771, 2237, 2550, 3120, 3510, 4273, 4751, 5700, 6324, 7444, 8184, 9595, 10472, 12161, 13254, 15185, 16451, 18800, 20254, 22991, 24743, 27817, 29799, 33433, 35673, 39821, 42454
Offset: 5

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A011983.
A column of A036838.

Programs

  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,5,4,1).
  • Mathematica
    L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v - t + 1, i <= v, i++, t1 = Ceiling[t1*i/(i - (v - k))]]; t1];
    T[n_, k_] := L[n + 2, k + 2, k + 1, 1];
    a[n_] := T[n - 2, 3];
    Table[a[n], {n, 5, 46}] (* Jean-François Alcover, Mar 07 2023, after Maple code *)