A036832 Schoenheim bound L_1(n,5,4).
1, 5, 9, 18, 26, 50, 66, 113, 149, 219, 273, 397, 476, 659, 787, 1028, 1197, 1549, 1771, 2237, 2550, 3120, 3510, 4273, 4751, 5700, 6324, 7444, 8184, 9595, 10472, 12161, 13254, 15185, 16451, 18800, 20254, 22991, 24743, 27817, 29799, 33433, 35673, 39821, 42454
Offset: 5
Keywords
References
- W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.
Programs
-
Maple
L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,5,4,1).
-
Mathematica
L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v - t + 1, i <= v, i++, t1 = Ceiling[t1*i/(i - (v - k))]]; t1]; T[n_, k_] := L[n + 2, k + 2, k + 1, 1]; a[n_] := T[n - 2, 3]; Table[a[n], {n, 5, 46}] (* Jean-François Alcover, Mar 07 2023, after Maple code *)