A036838 Triangle read by rows: T(n,k) = value of Schoenheim bound L_1(n+2,k+2,k+1) on covering numbers (0 <= k <= n).
1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 6, 6, 5, 1, 4, 7, 11, 9, 6, 1, 4, 11, 14, 18, 12, 7, 1, 5, 12, 25, 26, 27, 16, 8, 1, 5, 17, 30, 50, 44, 39, 20, 9, 1, 6, 19, 47, 66, 92, 70, 54, 25, 10, 1, 6, 24, 57, 113, 132, 158, 105, 72, 30, 11, 1, 7, 26, 78, 149, 245, 246
Offset: 0
Examples
Triangle begins 1; 2, 1; 2, 3, 1; 3, 4, 4, 1; 3, 6, 6, 5, 1; 4, 7, 11, 9, 6, 1; 4, 11, 14, 18, 12, 7, 1; 5, 12, 25, 26, 27, 16, 8, 1; ...
References
- W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.
Links
- J. Schoenheim, On coverings, Pac. J. Math. 14 (4) (1964) 1405-1411.
- Index entries for covering numbers
Crossrefs
Programs
-
Maple
L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; A036838 := proc(n,k) L(n+2,k+2,k+1,1) ; end proc:
-
Mathematica
L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v-t+1, i <= v, i++, t1 = Ceiling[t1*i/(i-(v-k))]]; t1]; A036838[n_, k_] := L[n+2, k+2, k+1, 1]; Table[A036838[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013, translated from Maple *)
Comments