cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A240115 Schoenheim lower bound L(n,4,2).

Original entry on oeis.org

1, 3, 3, 4, 6, 7, 8, 11, 12, 13, 18, 19, 20, 26, 27, 29, 35, 37, 39, 46, 48, 50, 59, 61, 63, 73, 75, 78, 88, 91, 94, 105, 108, 111, 124, 127, 130, 144, 147, 151, 165, 169, 173, 188, 192, 196, 213, 217, 221, 239, 243, 248, 266, 271, 276, 295, 300, 305, 326
Offset: 4

Views

Author

Colin Barker, Apr 01 2014

Keywords

Comments

Only differs from A011976 when n = 7, 9, 10, or 19. - Nathaniel Johnston, Jan 10 2024

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 4, 2], {n, 4, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=4, 100, s=concat(s, schoenheim(n, 4, 2))); s

Formula

Empirical g.f.: x^4*(x^15 -x^13 -x^12 +2*x^10 +x^7 +x^5 +2*x +1) / ( -x^16 +x^15 +x^13 -x^12 +x^4 -x^3 -x +1).
a(n) = ceiling((n/4)*ceiling((n-1)/3)). - Nathaniel Johnston, Jan 10 2024

A240116 Schoenheim lower bound L(n,5,2).

Original entry on oeis.org

1, 3, 3, 4, 4, 6, 7, 8, 8, 12, 12, 13, 14, 18, 19, 20, 21, 27, 28, 29, 30, 37, 38, 40, 41, 48, 50, 52, 53, 62, 63, 65, 67, 76, 78, 80, 82, 93, 95, 97, 99, 111, 113, 116, 118, 130, 133, 136, 138, 152, 154, 157, 160, 174, 177, 180, 183, 199, 202, 205, 208, 225
Offset: 5

Views

Author

Colin Barker, Apr 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 5, 2], {n, 5, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=5, 100, s=concat(s, schoenheim(n, 5, 2))); s

Formula

Empirical g.f.: x^5*(x^24 -x^21 -x^20 +2*x^17 +x^14 +x^12 -x^10 +2*x^9 +x^6 -x^4 +x^3 +2*x +1) / ( -x^25 +x^24 +x^21 -x^20 +x^5 -x^4 -x +1).
a(n) = ceiling((n/5)*ceiling((n-1)/4)). - Nathaniel Johnston, Jan 10 2024

A240118 Schoenheim lower bound L(n,5,3).

Original entry on oeis.org

1, 4, 5, 7, 11, 14, 18, 27, 32, 37, 54, 61, 68, 94, 103, 116, 147, 163, 180, 221, 240, 260, 319, 342, 366, 438, 465, 500, 581, 619, 658, 756, 800, 844, 968, 1016, 1066, 1210, 1265, 1329, 1485, 1555, 1627, 1805, 1882, 1960, 2173, 2257, 2343, 2582, 2673, 2778
Offset: 5

Views

Author

Colin Barker, Apr 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 5, 3], {n, 5, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=5, 100, s=concat(s, schoenheim(n, 5, 3))); s

A240119 Schoenheim lower bound L(n,6,3).

Original entry on oeis.org

1, 4, 4, 6, 7, 11, 14, 18, 19, 30, 32, 37, 42, 57, 64, 70, 77, 104, 112, 121, 130, 167, 178, 194, 205, 248, 267, 286, 301, 362, 378, 401, 425, 494, 520, 547, 574, 667, 697, 728, 759, 870, 904, 948, 984, 1105, 1153, 1202, 1242, 1394, 1438, 1492, 1547, 1711
Offset: 6

Views

Author

Colin Barker, Apr 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 6, 3], {n, 6, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=6, 100, s=concat(s, schoenheim(n, 6, 3))); s
Showing 1-4 of 4 results.