A240116 Schoenheim lower bound L(n,5,2).
1, 3, 3, 4, 4, 6, 7, 8, 8, 12, 12, 13, 14, 18, 19, 20, 21, 27, 28, 29, 30, 37, 38, 40, 41, 48, 50, 52, 53, 62, 63, 65, 67, 76, 78, 80, 82, 93, 95, 97, 99, 111, 113, 116, 118, 130, 133, 136, 138, 152, 154, 157, 160, 174, 177, 180, 183, 199, 202, 205, 208, 225
Offset: 5
Links
- Colin Barker, Table of n, a(n) for n = 5..1000
- D. Gordon, G. Kuperberg and O. Patashnik, New constructions for covering designs, arXiv:math/9502238 [math.CO], 1995.
Crossrefs
Programs
-
Mathematica
schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb]; Table[schoenheim[n, 5, 2], {n, 5, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
-
PARI
schoenheim(n, k, t) = { my(lb = 1); n += 1-t; k += 1-t; while(t>0, lb = ceil((lb*n)/k); t--; n++; k++ ); lb } s=[]; for(n=5, 100, s=concat(s, schoenheim(n, 5, 2))); s
Formula
Empirical g.f.: x^5*(x^24 -x^21 -x^20 +2*x^17 +x^14 +x^12 -x^10 +2*x^9 +x^6 -x^4 +x^3 +2*x +1) / ( -x^25 +x^24 +x^21 -x^20 +x^5 -x^4 -x +1).
a(n) = ceiling((n/5)*ceiling((n-1)/4)). - Nathaniel Johnston, Jan 10 2024
Comments