cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A011975 Covering numbers C(n,3,2).

Original entry on oeis.org

1, 3, 4, 6, 7, 11, 12, 17, 19, 24, 26, 33, 35, 43, 46, 54, 57, 67, 70, 81, 85, 96, 100, 113, 117, 131, 136, 150, 155, 171, 176, 193, 199, 216, 222, 241, 247, 267, 274, 294, 301, 323, 330, 353, 361, 384, 392, 417, 425, 451, 460, 486
Offset: 3

Views

Author

Keywords

Comments

Also, minimal number of triangles needed to cover every edge (and node) of a complete graph on n nodes. This problem is also known as the edge clique covering problem. - Dmitry Kamenetsky, Jan 24 2016

References

  • P. J. Cameron, Combinatorics, ..., Cambridge, 1994, see p. 121.
  • CRC Handbook of Combinatorial Designs, 1996, p. 262.
  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.

Crossrefs

Cf. A011976, A011977, A001839. A column of A066010. Also a column of A036838.

Programs

  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Present sequence is L_1(n,3,2,1).
  • Mathematica
    L[v_, k_, t_, m_] := Module[{t1 = m}, Do[t1 = Ceiling[t1*i/(i - (v - k))], {i, v - t + 1, v}]; t1]; Table[L[n, 3, 2, 1], {n, 3, 100}] (* T. D. Noe, Sep 28 2011 *)

Formula

Conjecture: G.f. ( -1-2*x-2*x^5+x^7+x^6-x^8 ) / ( (1+x+x^2)*(x^2-x+1)*(1+x)^2*(x-1)^3 ) with a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9). - R. J. Mathar, Aug 12 2012
a(n) = ceiling((n/3)*ceiling((n-1)/2)). - Nathaniel Johnston, Jan 10 2024

A240115 Schoenheim lower bound L(n,4,2).

Original entry on oeis.org

1, 3, 3, 4, 6, 7, 8, 11, 12, 13, 18, 19, 20, 26, 27, 29, 35, 37, 39, 46, 48, 50, 59, 61, 63, 73, 75, 78, 88, 91, 94, 105, 108, 111, 124, 127, 130, 144, 147, 151, 165, 169, 173, 188, 192, 196, 213, 217, 221, 239, 243, 248, 266, 271, 276, 295, 300, 305, 326
Offset: 4

Views

Author

Colin Barker, Apr 01 2014

Keywords

Comments

Only differs from A011976 when n = 7, 9, 10, or 19. - Nathaniel Johnston, Jan 10 2024

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 4, 2], {n, 4, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=4, 100, s=concat(s, schoenheim(n, 4, 2))); s

Formula

Empirical g.f.: x^4*(x^15 -x^13 -x^12 +2*x^10 +x^7 +x^5 +2*x +1) / ( -x^16 +x^15 +x^13 -x^12 +x^4 -x^3 -x +1).
a(n) = ceiling((n/4)*ceiling((n-1)/3)). - Nathaniel Johnston, Jan 10 2024
Showing 1-2 of 2 results.