cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A036838 Triangle read by rows: T(n,k) = value of Schoenheim bound L_1(n+2,k+2,k+1) on covering numbers (0 <= k <= n).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 6, 6, 5, 1, 4, 7, 11, 9, 6, 1, 4, 11, 14, 18, 12, 7, 1, 5, 12, 25, 26, 27, 16, 8, 1, 5, 17, 30, 50, 44, 39, 20, 9, 1, 6, 19, 47, 66, 92, 70, 54, 25, 10, 1, 6, 24, 57, 113, 132, 158, 105, 72, 30, 11, 1, 7, 26, 78, 149, 245, 246
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

Comments

The relation with Schoenheim's notation is L(v,k,t,l) = psi(k,t,l,v). - R. J. Mathar, Aug 12 2012

Examples

			Triangle begins
  1;
  2,  1;
  2,  3,  1;
  3,  4,  4,  1;
  3,  6,  6,  5,  1;
  4,  7, 11,  9,  6,  1;
  4, 11, 14, 18, 12,  7,  1;
  5, 12, 25, 26, 27, 16,  8,  1;
  ...
		

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Programs

  • Maple
    L := proc(v,k,t,l)
        local i,t1;
        t1 := l;
        for i from v-t+1 to v do
            t1 := ceil(t1*i/(i-(v-k)));
        od:
        t1;
    end;
    A036838 := proc(n,k)
        L(n+2,k+2,k+1,1) ;
    end proc:
  • Mathematica
    L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v-t+1, i <= v, i++, t1 = Ceiling[t1*i/(i-(v-k))]]; t1]; A036838[n_, k_] := L[n+2, k+2, k+1, 1]; Table[A036838[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013, translated from Maple *)

A066010 Triangle of covering numbers T(n,k) = C(n,k,k-1), n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 6, 6, 5, 1, 4, 7, 12, 9, 6, 1, 4, 11, 14, 20, 12, 7, 1, 5, 12, 25, 30, 30, 16, 8, 1, 5, 17, 30, 51, 50, 45, 20, 9, 1, 6, 19, 47, 66
Offset: 2

Views

Author

N. J. A. Sloane, Dec 30 2001

Keywords

Comments

C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets.

Examples

			Table of values of C(v,k,k-1):
v\k.2..3..4...5...6...7...8..9.10.11.12.13
.2 .1
.3 .2..1
.4 .2..3..1
.5 .3..4..4...1
.6 .3..6..6...5...1
.7 .4..7.12...9...6...1
.8 .4.11.14..20..12...7...1
.9 .5.12.25..30..30..16...8..1
10 .5.17.30..51..50..45..20..9..1
11 .6.19.47..66...a..84..63.25.10..1
12 .6.24.57.113.132...b.126.84.30.11..1
13 .7.26.78.???.245.???..?.185.??.36.12.1
where a in range 96-100, b in range 165-176
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 263.
  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.

Crossrefs

Triangle in A066701 gives number of nonisomorphic solutions.
Triangle in A036838 (the Schoenheim bound) gives lower bounds to these entries.

A001839 The coding-theoretic function A(n,4,3).

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 8, 12, 13, 17, 20, 26, 28, 35, 37, 44, 48, 57, 60, 70, 73, 83, 88, 100, 104, 117, 121, 134, 140, 155, 160, 176, 181, 197, 204, 222, 228, 247, 253, 272, 280, 301, 308, 330, 337, 359, 368, 392, 400, 425, 433, 458, 468, 495, 504, 532, 541, 569, 580, 610, 620, 651, 661, 692, 704, 737, 748, 782, 793
Offset: 1

Views

Author

Keywords

Comments

Maximum number of edge-disjoint K_3's in a K_n.
Maximum number of clauses in a reduced 1 in 3 SAT instance. Given N items taken three at a time, what is the maximum number of combinations such that no two combinations share more than one item in common. There are reduction rules for 1 in 3 SAT that guarantee no two clauses share more than one variable in common. a(n) is the maximum number of clauses a reduced instance with n variables can have. Example: a(6)=4: (a,b,c)(a,d,e)(b,d,f)(c,e,f). - Russell Easterly, Oct 02 2005
Agrees with independence number of the n-tetrahedral graph for at least a(6)-a(12). - Eric W. Weisstein, Jun 14 2017 and Jul 24 2017
Packing number D(n,3,2). - Rob Pratt, Feb 26 2024

Examples

			Codes illustrating A(4,3,4) = a(3) = 1, A(5,3,4) = a(5) = 2 and A(6,3,4) = a(6) = 4 are:
   1110...11100..111000
   .......10011..100110
   ..............010101
   ..............001011
		

References

  • P. J. Cameron, Combinatorics, ..., Cambridge, 1994, see p. 121.
  • CRC Handbook of Combinatorial Designs, 1996, p. 411.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Floor[n Floor[(n - 1)/2]/3] - Boole[Mod[n, 6] == 5], {n, 20}] (* Eric W. Weisstein, Jul 13 2017 *)
    Table[(6 n^2 - 9 n - 10 - 3 (-1)^n (n - 2) - 6 Cos[n Pi/3] + 10 Cos[2 n Pi/3] + 10 Sqrt[3] Sin[n Pi/3] + 6 Sqrt[3] Sin[2 n Pi/3])/36, {n, 20}]  (* Eric W. Weisstein, Jul 13 2017 *)
    LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 1, 1, 2, 4, 7,
       8, 12}, 20] (* Eric W. Weisstein, Jul 13 2017 *)
    CoefficientList[Series[(x^2 (-1 - 2 x^3 - 2 x^4 + x^5))/((-1 + x)^3 (1 + x)^2 (1 - x + x^2) (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 13 2017 *)

Formula

Known exactly for all n - see Theorem 4 of Brouwer et al. (1990): A(n, 4, 3) = floor((n/3)*floor((n-1)/2))-1 if n is congruent to 5 (mod 6) and A(n, 4, 3) = floor((n/3)*floor((n-1)/2)) if n is not congruent to 5 (mod 6). - Shelly Jones (shellysalt(AT)yahoo.com), Apr 27 2004
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9). - Eric W. Weisstein, Jul 13 2017
G.f.: x^3*(x^5-2*x^4-2*x^3-1) / ((x-1)^3*(x+1)^2*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Sep 21 2013

Extensions

More terms from Shelly Jones (shellysalt(AT)yahoo.com), Apr 27 2004

A036831 Schoenheim bound L_1(n,4,3).

Original entry on oeis.org

1, 4, 6, 11, 14, 25, 30, 47, 57, 78, 91, 124, 140, 183, 207, 257, 285, 352, 385, 466, 510, 600, 650, 763, 819, 950, 1020, 1163, 1240, 1411, 1496, 1689, 1791, 1998, 2109, 2350, 2470, 2737, 2877, 3161, 3311, 3634, 3795, 4148, 4332, 4704, 4900, 5317, 5525, 5976
Offset: 4

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A011979. Cf. A011975.
A column of A036838.

Programs

  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,4,3,1).
  • Mathematica
    L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v - t + 1, i <= v, i++, t1 = Ceiling[t1*i/(i - (v - k))]]; t1];
    T[n_, k_] := L[n + 2, k + 2, k + 1, 1];
    a[n_] := T[n - 2, 2];
    Table[a[n], {n, 4, 49}] (* Jean-François Alcover, Mar 07 2023, after Maple code *)

A240115 Schoenheim lower bound L(n,4,2).

Original entry on oeis.org

1, 3, 3, 4, 6, 7, 8, 11, 12, 13, 18, 19, 20, 26, 27, 29, 35, 37, 39, 46, 48, 50, 59, 61, 63, 73, 75, 78, 88, 91, 94, 105, 108, 111, 124, 127, 130, 144, 147, 151, 165, 169, 173, 188, 192, 196, 213, 217, 221, 239, 243, 248, 266, 271, 276, 295, 300, 305, 326
Offset: 4

Views

Author

Colin Barker, Apr 01 2014

Keywords

Comments

Only differs from A011976 when n = 7, 9, 10, or 19. - Nathaniel Johnston, Jan 10 2024

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 4, 2], {n, 4, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=4, 100, s=concat(s, schoenheim(n, 4, 2))); s

Formula

Empirical g.f.: x^4*(x^15 -x^13 -x^12 +2*x^10 +x^7 +x^5 +2*x +1) / ( -x^16 +x^15 +x^13 -x^12 +x^4 -x^3 -x +1).
a(n) = ceiling((n/4)*ceiling((n-1)/3)). - Nathaniel Johnston, Jan 10 2024

A240116 Schoenheim lower bound L(n,5,2).

Original entry on oeis.org

1, 3, 3, 4, 4, 6, 7, 8, 8, 12, 12, 13, 14, 18, 19, 20, 21, 27, 28, 29, 30, 37, 38, 40, 41, 48, 50, 52, 53, 62, 63, 65, 67, 76, 78, 80, 82, 93, 95, 97, 99, 111, 113, 116, 118, 130, 133, 136, 138, 152, 154, 157, 160, 174, 177, 180, 183, 199, 202, 205, 208, 225
Offset: 5

Views

Author

Colin Barker, Apr 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 5, 2], {n, 5, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=5, 100, s=concat(s, schoenheim(n, 5, 2))); s

Formula

Empirical g.f.: x^5*(x^24 -x^21 -x^20 +2*x^17 +x^14 +x^12 -x^10 +2*x^9 +x^6 -x^4 +x^3 +2*x +1) / ( -x^25 +x^24 +x^21 -x^20 +x^5 -x^4 -x +1).
a(n) = ceiling((n/5)*ceiling((n-1)/4)). - Nathaniel Johnston, Jan 10 2024

A240117 Schoenheim lower bound L(n,6,2).

Original entry on oeis.org

1, 3, 3, 3, 4, 4, 6, 7, 7, 8, 8, 12, 12, 13, 14, 14, 19, 20, 20, 21, 22, 27, 28, 29, 30, 31, 38, 39, 40, 41, 42, 50, 51, 52, 54, 55, 63, 65, 66, 68, 69, 79, 80, 82, 84, 85, 96, 98, 99, 101, 103, 114, 116, 118, 120, 122, 135, 137, 139, 141, 143, 157, 159, 161
Offset: 6

Views

Author

Colin Barker, Apr 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 6, 2], {n, 6, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=6, 100, s=concat(s, schoenheim(n, 6, 2))); s

Formula

Empirical g.f.: x^6*(x^35 -x^31 -x^30 +2*x^26 +x^23 +x^20 -x^18 +x^17 +x^16 +x^13 -x^12 +2*x^11 +x^7 -x^5 +x^4 +2*x +1) / ( -x^36 +x^35 +x^31 -x^30 +x^6 -x^5 -x +1).

A240118 Schoenheim lower bound L(n,5,3).

Original entry on oeis.org

1, 4, 5, 7, 11, 14, 18, 27, 32, 37, 54, 61, 68, 94, 103, 116, 147, 163, 180, 221, 240, 260, 319, 342, 366, 438, 465, 500, 581, 619, 658, 756, 800, 844, 968, 1016, 1066, 1210, 1265, 1329, 1485, 1555, 1627, 1805, 1882, 1960, 2173, 2257, 2343, 2582, 2673, 2778
Offset: 5

Views

Author

Colin Barker, Apr 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 5, 3], {n, 5, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=5, 100, s=concat(s, schoenheim(n, 5, 3))); s

A240119 Schoenheim lower bound L(n,6,3).

Original entry on oeis.org

1, 4, 4, 6, 7, 11, 14, 18, 19, 30, 32, 37, 42, 57, 64, 70, 77, 104, 112, 121, 130, 167, 178, 194, 205, 248, 267, 286, 301, 362, 378, 401, 425, 494, 520, 547, 574, 667, 697, 728, 759, 870, 904, 948, 984, 1105, 1153, 1202, 1242, 1394, 1438, 1492, 1547, 1711
Offset: 6

Views

Author

Colin Barker, Apr 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
    Table[schoenheim[n, 6, 3], {n, 6, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
  • PARI
    schoenheim(n, k, t) = {
      my(lb = 1);
      n += 1-t; k += 1-t;
      while(t>0,
        lb = ceil((lb*n)/k);
        t--; n++; k++
      );
      lb
    }
    s=[]; for(n=6, 100, s=concat(s, schoenheim(n, 6, 3))); s

A011977 Covering numbers C(n,5,2).

Original entry on oeis.org

1, 3, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 21, 27, 28, 30, 30, 37, 38, 40
Offset: 5

Views

Author

Keywords

Comments

It is known that 42 <= a(29) <= 43. The next few values are known: a(30) = 48, a(31) = 50, a(32) = 52. - Nathaniel Johnston, Jan 10 2024

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 262.

Crossrefs

Extensions

a(28) from Nathaniel Johnston, Jan 10 2024
Showing 1-10 of 12 results. Next