cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A014125 Bisection of A001400.

Original entry on oeis.org

1, 3, 6, 11, 18, 27, 39, 54, 72, 94, 120, 150, 185, 225, 270, 321, 378, 441, 511, 588, 672, 764, 864, 972, 1089, 1215, 1350, 1495, 1650, 1815, 1991, 2178, 2376, 2586, 2808, 3042, 3289, 3549, 3822, 4109, 4410, 4725, 5055, 5400, 5760, 6136, 6528, 6936, 7361, 7803
Offset: 0

Views

Author

Keywords

Comments

Also Schoenheim bound L_1(n,5,4).
Degrees of polynomials defined by p(n) = (x^(n+1)*p(n-1)p(n-3) + p(n-2)^2)/p(n-4), p(-4)=p(-3)=p(-2)=p(-1)=1. - Michael Somos, Jul 21 2004
Degrees of polynomial tau-functions of q-discrete Painlevé I, which generate sequence A095708 when q=2 (up to an offset of 3). - Andrew Hone, Jul 29 2004
Because of the Laurent phenomenon for the general q-discrete Painlevé I tau-function recurrence p(n) = (a*x^(n+1)*p(n-1)*p(n-3) + b*p(n-2)^2)/p(n-4), p(n) for n > -1 will always be a polynomial in x and a Laurent polynomial in a,b and the initial data p(-4),p(-3),p(-2),p(-1). - Andrew Hone, Jul 29 2004
Create the sequence 0,0,0,0,0,6,18,36,66,108,... so that the sum of three consecutive terms b(n) + b(n+1) + b(n+2) = A007531(n), with b(0)=0; then a(n) = b(n+5)/6. - J. M. Bergot, Jul 30 2013
Number of partitions of n into three kinds of part 1 and one kind of part 3. - Joerg Arndt, Sep 28 2015
First differences are A001840(k) starting with k=2; second differences are A086161(k) starting with k=1. - Bob Selcoe, Sep 28 2015
Maximum Wiener index of all maximal planar graphs with n+2 vertices. The extremal graphs are cubes of paths. - Allan Bickle, Jul 09 2022
Maximum Wiener index of all maximal 3-degenerate graphs with n+2 vertices. (A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices.) The extremal graphs are cubes of paths, so the bound also applies to 3-trees. - Allan Bickle, Sep 18 2022

Examples

			Polynomials: p(0)=x+1, p(1)=x^3+x^2+1, p(2)=x^6+x^5+x^3+x^2+2x+1, ...
a(12)=185:  A000217(13)=91 + a(9)=94 == 91+55+28+10+1 = 185. - _Bob Selcoe_, Sep 27 2015
a(3)=11: the 11 partitions of 3 are {1a,1a,1a}, {1a,1a,1b}, {1a,1a,1c}, {1a,1b,1b}, {1a,1b,1c}, {1a,1c,1c}, {1b,1b,1b}, {1b,1b,1c}, {1b,1c,1c}, {1c,1c,1c}, {3}. - _Bob Selcoe_, Oct 04 2015
		

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • L. Smiley, Hidden Hexagons (preprint).

Crossrefs

A column of A036838.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046, A122047, A175724.

Programs

  • Magma
    [n^3/18+n^2/2+4*n/3+1+(((n+1) mod 3)-1)/9 : n in [0..50]]; // Wesley Ivan Hurt, Apr 14 2015
    
  • Magma
    I:=[1,3,6,11,18,27]; [n le 6 select I[n] else 3*Self(n-1) -3*Self(n-2) +2*Self(n-3)-3*Self(n-4)+3*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Apr 15 2015
    
  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,n-3,n-4,1).
  • Mathematica
    CoefficientList[Series[1/((1 - x)^3*(1 - x^3)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Apr 14 2015 *)
  • PARI
    a(n)=if(n<-5,-a(-6-n),polcoeff(1/(1-x)^3/(1-x^3)+x^n*O(x),n)) /* Michael Somos, Jul 21 2004 */
    
  • PARI
    my(x='x+O('x^50)); Vec(1/((1-x)^3*(1-x^3))) \\ Altug Alkan, Oct 16 2015
    
  • PARI
    a(n)=(n^3 + 9*n^2 + 24*n + 19)\/18 \\ Charles R Greathouse IV, Jun 29 2020
    
  • Sage
    [(binomial(n+4,3) - ((n+4)//3))/3 for n in (0..50)] # G. C. Greubel, Apr 28 2019

Formula

G.f.: 1/((1-x)^3*(1-x^3)).
a(n) = -a(-6-n) = 3*a(n-1) -3*a(n-2) +2*a(n-3) -3*a(n-4) +3*a(n-5) -a(n-6).
The simplest recurrence is fourth order: a(n) = a(n-1) + a(n-3) - a(n-4) + n + 1, which gives the g.f.: 1/((1-x)^3*(1-x^3)), with a(-4) = a(-3) = a(-2) = a(-1) = 0.
a(n) = n^3/18 + n^2/2 + 4*n/3 + 1 + 2/(9*sqrt(3))*sin(2*Pi*n/3). - Andrew Hone, Jul 29 2004
a(n) = n^3/18 + n^2/2 + 4*n/3 + 1 + (((n+1) mod 3) - 1)/9. - same formula, simplified by Gerald Hillier, Apr 14 2015
a(n) = (2*A000027(n+1) + 3*A000292(n+1) + A049347(n-1) + 1 + 3*A000217(n+1))/9. - R. J. Mathar, Nov 16 2007
From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A144677(n) + A144677(n-1) + A144677(n-2).
a(n) = A190717(n-4) + 2*A190717(n-3) + 3*A190717(n-2) + 2*A190717(n-1) + A190717(n). (End)
3*a(n) = binomial(n+4,3) - floor((n+4)/3). - Bruno Berselli, Nov 08 2013
a(n) = A000217(n+1) + a(n-3) = Sum_{j>=0, n>=3*j} (n-3*j+1)*(n-3*j+2)/2. - Bob Selcoe, Sep 27 2015
a(n) = round(((2*n+5)^3 + 3*(2*n+5)^2 - 9*(2*n+5))/144). - Giacomo Guglieri, Jun 28 2020
a(n) = floor(((n+2)^3 + 3*(n+2)^2)/18). - Allan Bickle, Aug 01 2020
a(n) = Sum_{j=0..n} (n-j+1)*floor((j+3)/3). - G. C. Greubel, Oct 18 2021
E.g.f.: exp(x) + exp(x)*x*(34 + 12*x + x^2)/18 + 2*exp(-x/2)*sin(sqrt(3)*x/2)/(9*sqrt(3)). - Stefano Spezia, Apr 05 2023

Extensions

More terms from James Sellers, Dec 24 1999

A011975 Covering numbers C(n,3,2).

Original entry on oeis.org

1, 3, 4, 6, 7, 11, 12, 17, 19, 24, 26, 33, 35, 43, 46, 54, 57, 67, 70, 81, 85, 96, 100, 113, 117, 131, 136, 150, 155, 171, 176, 193, 199, 216, 222, 241, 247, 267, 274, 294, 301, 323, 330, 353, 361, 384, 392, 417, 425, 451, 460, 486
Offset: 3

Views

Author

Keywords

Comments

Also, minimal number of triangles needed to cover every edge (and node) of a complete graph on n nodes. This problem is also known as the edge clique covering problem. - Dmitry Kamenetsky, Jan 24 2016

References

  • P. J. Cameron, Combinatorics, ..., Cambridge, 1994, see p. 121.
  • CRC Handbook of Combinatorial Designs, 1996, p. 262.
  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.

Crossrefs

Cf. A011976, A011977, A001839. A column of A066010. Also a column of A036838.

Programs

  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Present sequence is L_1(n,3,2,1).
  • Mathematica
    L[v_, k_, t_, m_] := Module[{t1 = m}, Do[t1 = Ceiling[t1*i/(i - (v - k))], {i, v - t + 1, v}]; t1]; Table[L[n, 3, 2, 1], {n, 3, 100}] (* T. D. Noe, Sep 28 2011 *)

Formula

Conjecture: G.f. ( -1-2*x-2*x^5+x^7+x^6-x^8 ) / ( (1+x+x^2)*(x^2-x+1)*(1+x)^2*(x-1)^3 ) with a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9). - R. J. Mathar, Aug 12 2012
a(n) = ceiling((n/3)*ceiling((n-1)/2)). - Nathaniel Johnston, Jan 10 2024

A066010 Triangle of covering numbers T(n,k) = C(n,k,k-1), n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 6, 6, 5, 1, 4, 7, 12, 9, 6, 1, 4, 11, 14, 20, 12, 7, 1, 5, 12, 25, 30, 30, 16, 8, 1, 5, 17, 30, 51, 50, 45, 20, 9, 1, 6, 19, 47, 66
Offset: 2

Views

Author

N. J. A. Sloane, Dec 30 2001

Keywords

Comments

C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets.

Examples

			Table of values of C(v,k,k-1):
v\k.2..3..4...5...6...7...8..9.10.11.12.13
.2 .1
.3 .2..1
.4 .2..3..1
.5 .3..4..4...1
.6 .3..6..6...5...1
.7 .4..7.12...9...6...1
.8 .4.11.14..20..12...7...1
.9 .5.12.25..30..30..16...8..1
10 .5.17.30..51..50..45..20..9..1
11 .6.19.47..66...a..84..63.25.10..1
12 .6.24.57.113.132...b.126.84.30.11..1
13 .7.26.78.???.245.???..?.185.??.36.12.1
where a in range 96-100, b in range 165-176
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 263.
  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.

Crossrefs

Triangle in A066701 gives number of nonisomorphic solutions.
Triangle in A036838 (the Schoenheim bound) gives lower bounds to these entries.

A036831 Schoenheim bound L_1(n,4,3).

Original entry on oeis.org

1, 4, 6, 11, 14, 25, 30, 47, 57, 78, 91, 124, 140, 183, 207, 257, 285, 352, 385, 466, 510, 600, 650, 763, 819, 950, 1020, 1163, 1240, 1411, 1496, 1689, 1791, 1998, 2109, 2350, 2470, 2737, 2877, 3161, 3311, 3634, 3795, 4148, 4332, 4704, 4900, 5317, 5525, 5976
Offset: 4

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A011979. Cf. A011975.
A column of A036838.

Programs

  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,4,3,1).
  • Mathematica
    L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v - t + 1, i <= v, i++, t1 = Ceiling[t1*i/(i - (v - k))]]; t1];
    T[n_, k_] := L[n + 2, k + 2, k + 1, 1];
    a[n_] := T[n - 2, 2];
    Table[a[n], {n, 4, 49}] (* Jean-François Alcover, Mar 07 2023, after Maple code *)

A036832 Schoenheim bound L_1(n,5,4).

Original entry on oeis.org

1, 5, 9, 18, 26, 50, 66, 113, 149, 219, 273, 397, 476, 659, 787, 1028, 1197, 1549, 1771, 2237, 2550, 3120, 3510, 4273, 4751, 5700, 6324, 7444, 8184, 9595, 10472, 12161, 13254, 15185, 16451, 18800, 20254, 22991, 24743, 27817, 29799, 33433, 35673, 39821, 42454
Offset: 5

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A011983.
A column of A036838.

Programs

  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,5,4,1).
  • Mathematica
    L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v - t + 1, i <= v, i++, t1 = Ceiling[t1*i/(i - (v - k))]]; t1];
    T[n_, k_] := L[n + 2, k + 2, k + 1, 1];
    a[n_] := T[n - 2, 3];
    Table[a[n], {n, 5, 46}] (* Jean-François Alcover, Mar 07 2023, after Maple code *)

A036833 Schoenheim bound L_1(n,6,5).

Original entry on oeis.org

1, 6, 12, 27, 44, 92, 132, 245, 348, 548, 728, 1125, 1428, 2087, 2624, 3598, 4389, 5938, 7084, 9321, 11050, 14040, 16380, 20653, 23755, 29450, 33728, 40942, 46376, 55971, 62832, 74993, 83942, 98703, 109674, 128467, 141778, 164769
Offset: 6

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A011987.
A column of A036838.

A036834 Schoenheim bound L_1(n,7,6).

Original entry on oeis.org

1, 7, 16, 39, 70, 158, 246, 490, 746, 1253, 1768, 2893, 3876, 5963, 7872, 11308, 14421, 20359, 25300, 34621, 42622, 56160, 67860, 88513, 105201, 134629, 159004, 198862, 231880, 287851, 332112, 407105, 467677, 564018, 642377
Offset: 7

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A066009.
A column of A036838.

A036835 Schoenheim bound L_1(n,8,7).

Original entry on oeis.org

1, 8, 20, 54, 105, 257, 431, 919, 1492, 2663, 3978, 6871, 9690, 15653, 21648, 32511, 43263, 63622, 82225, 116846, 149177, 203580, 254475, 342988, 420804, 555345, 675767, 870022, 1043460, 1331311, 1577532, 1984637, 2338385, 2890593
Offset: 8

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A066011.
A column of A036838.

A036836 Schoenheim bound L_1(n,9,8).

Original entry on oeis.org

1, 9, 25, 72, 152, 400, 719, 1634, 2819, 5326, 8398, 15269, 22610, 38263, 55323, 86696, 120175, 183797, 246675, 363521, 480682, 678600, 876525, 1219513, 1542948, 2097970, 2627983, 3480088, 4289780, 5621091, 6835972, 8820609
Offset: 9

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A066137.
A column of A036838.

A036830 Schoenheim bound L_1(n,n-4,n-5).

Original entry on oeis.org

3, 7, 14, 26, 44, 70, 105, 152, 213, 291, 388, 508, 654, 829, 1037, 1281, 1566, 1896, 2276, 2710, 3203, 3761, 4388, 5091, 5875, 6746, 7710, 8774, 9944, 11228, 12632, 14164, 15831, 17641, 19602, 21722, 24009, 26472, 29120, 31961, 35005
Offset: 6

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Lower bound to A066225.
A column of A036838.

Programs

  • Maple
    A036830 := proc(n) local i,t1; t1 := 1; for i from 6 to n do t1 := ceil(t1*i/(i-4)); od: t1; end;
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t)
  • PARI
    a(n)=if(n<7,3,ceil(n/(n-4)*a(n-1)))

Formula

a(6)=3; a(n) = ceiling(n/(n-4)*a(n-1)). - Benoit Cloitre, May 31 2003
Showing 1-10 of 11 results. Next