cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037000 Positions of the digit '1' in the decimal expansion of Pi.

Original entry on oeis.org

1, 3, 37, 40, 49, 68, 94, 95, 103, 110, 138, 148, 153, 154, 155, 163, 168, 174, 175, 198, 206, 220, 238, 243, 246, 250, 269, 281, 295, 297, 314, 319, 324, 342, 344, 362, 363, 381, 385, 390, 393, 395, 396, 417, 424, 427, 428, 432, 437, 438, 442, 445, 446
Offset: 1

Views

Author

Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br)

Keywords

Comments

From M. F. Hasler, Jul 28 2024: (Start)
"Positions" are indices n of digits d(n) such that Pi = Sum_{n >= 0} d(n)/10^n; see A053745 for the variant where the initial digit 3 is at position 1.
The first few primes in this sequence are 3, 37, 103, 163, 269, 281, 499, 541, 547, 587, 607, 709, 797, 859, 887, 971, 983, 997, ... (End)

Crossrefs

Cf. A000796 (decimals of Pi), A037001 - A037008 and A036974 (positions of other digits), A053745 (variant with all values increased by 1).

Programs

  • Maple
    P:= convert(evalf[100000](Pi),string)[3..-1]:
    select(t -> P[t]="1",[$1..length(P)-1]); # Robert Israel, Dec 22 2013
  • Mathematica
    Flatten @ Position[ RealDigits[Pi - 3, 10, 500][[1]], 1] (* Robert G. Wilson v, Mar 07 2011 *)
  • PARI
    A037000_upto(N=500, d=1)={localprec(N+20); [i-1|i<-[1..#N=digits(Pi\10^-N)], N[i]==d]} \\ M. F. Hasler, Jul 28 2024

Formula

Conjecturally, a(n) ~ 10n.