A037047 Starting at n, "say what you see"; sequence gives number of primes obtained before first composite number appears.
1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
1 -> 11 (prime) -> 21 (composite), so a(1) = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- P. De Geest, World!Of Palindromic Primes
Programs
-
PARI
A045918(a) = { my(c=1); for(j=2, #a=Vec(Str(a)), if(a[j-1]==a[j], a[j-1]=""; c++, a[j-1]=Str(c, a[j-1]); c=1)); a[#a]=Str(c, a[#a]); eval(concat(a)) }; \\ From A045918 by M. F. Hasler, Jan 27 2012 A037047(n) = if(1==n,n,my(c=0); while(1, n = A045918(n); if(isprime(n), c++, return(c)))); \\ Antti Karttunen, Feb 13 2019
Extensions
More terms from Antti Karttunen, Feb 13 2019
Comments