cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037067 Smallest prime containing exactly n 7's.

Original entry on oeis.org

2, 7, 277, 1777, 47777, 727777, 7477777, 77767777, 577777777, 1777777777, 67777777777, 377777777777, 7177777777777, 17777777777777, 577777777777777, 2777777777777777, 77777767777777777, 377777777777777777, 2777777777777777777, 71777777777777777777
Offset: 0

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Comments

We conjecture that for all n >= 2, a(n) equals floor(10^(n+1)/9)*7 with one of the (first) digits 7 replaced by a digit among {0, ..., 6}. - M. F. Hasler, Feb 22 2016
The conjecture is false: a(668) = 7*(10^669-1)/9 + 10^276. - Robert Israel, Jul 13 2016

Crossrefs

Programs

  • Maple
    F:= proc(n) local x0,i,j;
      x0:= 7/9*(10^(n+1)-1);
      for j from 1 to 6 do
        if isprime(x0 + (j-7)*10^n) then
          return x0 + (j-7)*10^n fi od;
      for i from n-1 to 0 by -1 do
        for j from 0 to 6 do
         if isprime(x0 + (j-7)*10^i) then
           return x0 + (j-7)*10^i fi od od;
      for i from 0 to n do
        for j from 8 to 9 do
           if isprime(x0 + (j-7)*10^i) then
             return x0 + (j-7)*10^i fi
      od od:
    end proc:
    F(0):= 2: F(1):= 7:
    map(F, [$0..100]); # Robert Israel, Jul 13 2016
  • Mathematica
    f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 7], {n, 1, 18}]
  • PARI
    A037067(n)={my(t=10^(n+1)\9*7); forvec(v=[[-1, n], [-7, -1]], ispseudoprime(p=t+10^(n-v[1])*v[2]) && return(p)); error} \\ M. F. Hasler, Feb 22 2016

Formula

a(n) = prime(A037066(n)). - Amiram Eldar, Jul 21 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
More terms from and a(0) = 2 prepended by M. F. Hasler, Feb 22 2016