A037097 Periodic vertical binary vectors of powers of 3, starting from bit-column 2 (halved).
0, 12, 120, 57120, 93321840, 10431955353116229600, 8557304989566294213168677685339060480, 102743047168201563425402150421568484707810385382513037790885688657488312400960
Offset: 2
Examples
When powers of 3 are written in binary (see A004656), under each other as: 000000000001 (1) 000000000011 (3) 000000001001 (9) 000000011011 (27) 000001010001 (81) 000011110011 (243) 001011011001 (729) 100010001011 (2187) it can be seen that, starting from the column 2 from the right, the bits in the n-th column can be arranged in periods of 2^(n-1): 4, 8, ... This sequence is formed from those bits: 0011, reversed is 11100, which is binary for 12, thus a(3) = 12, 00011110, reversed is 011110000, which is binary for 120, thus a(4) = 120.
References
- S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.
Links
- A. Karttunen, Table of n, a(n) for n = 2..12
- A. Karttunen, C program for computing this sequence
- S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.
Programs
-
Maple
a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n-1))-1); bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);
Formula
Extensions
Entry revised Dec 29 2007
Comments