A037162 Well-order the rational numbers; take denominators.
1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 5, 5, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 2, 4, 5, 7, 8, 8, 7, 5, 4, 2, 1, 1, 3, 7, 9, 9, 7, 3, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 0
References
- Sierpiński, Cardinal and Ordinal Numbers, Warsaw 1965, 2nd ed., p. 40.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
import Data.List (transpose) import Data.Ratio ((%), denominator) a037162 n = a037162_list !! n a037162_list = 1 : map denominator (concat $ concat $ transpose [map (map negate) qss, map reverse qss]) where qss = map q [1..] q x = map (uncurry (%)) $ filter ((== 1) . uncurry gcd) $ zip (reverse zs) zs where zs = [1..x] -- Reinhard Zumkeller, Mar 08 2013
-
Mathematica
order[n_] := Join[-Reverse[ pos = Select[(r = Range[n])/Reverse[r], Numerator[#] + Denominator[#] == n + 1 & ] ], pos]; order[0] = 0; Denominator[ Flatten[ Table[ order[n], {n, 0, 10}]]] (* Jean-François Alcover, Jun 27 2012 *)