A037226 a(n) = phi(2n+1) / multiplicative order of 2 mod 2n+1.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 6, 2, 2, 1, 2, 2, 3, 2, 2, 2, 4, 1, 2, 2, 1, 1, 6, 4, 1, 2, 2, 8, 2, 2, 2, 1, 1, 8, 2, 8, 6, 6, 2, 2, 2, 1, 2, 4, 1, 3, 2, 4, 2, 6, 4, 1, 4, 1, 18, 6, 1, 6, 2, 2, 1, 2, 2, 4, 2, 1, 10, 4, 6, 3, 2, 4
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Brillhart, John; Lomont, J. S.; Morton, Patrick. Cyclotomic properties of the Rudin-Shapiro polynomials, J. Reine Angew. Math.288 (1976), 37--65. See Table 2. MR0498479 (58 #16589).
- Jarkko Peltomäki and Aleksi Saarela, Standard words and solutions of the word equation X_1^2 ... X_n^2 = (X_1 ... X_n)^2, Journal of Combinatorial Theory, Series A (2021) Vol. 178, 105340. See also arXiv:2004.14657 [cs.FL], 2020.
Crossrefs
Programs
-
Mathematica
a[n_] := EulerPhi[2n+1]/MultiplicativeOrder[2, 2n+1]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 10 2015 *)
-
PARI
a(n)=eulerphi(2*n+1)/znorder(Mod(2,2*n+1)) \\ Charles R Greathouse IV, Dec 29 2013
Comments