cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037226 a(n) = phi(2n+1) / multiplicative order of 2 mod 2n+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 6, 2, 2, 1, 2, 2, 3, 2, 2, 2, 4, 1, 2, 2, 1, 1, 6, 4, 1, 2, 2, 8, 2, 2, 2, 1, 1, 8, 2, 8, 6, 6, 2, 2, 2, 1, 2, 4, 1, 3, 2, 4, 2, 6, 4, 1, 4, 1, 18, 6, 1, 6, 2, 2, 1, 2, 2, 4, 2, 1, 10, 4, 6, 3, 2, 4
Offset: 0

Views

Author

Keywords

Comments

Number of primitive irreducible factors of x^(2n+1) - 1 over integers mod 2. There are no primitive irreducible factors for x^(2n)-1 because it always has the same factors as x^n-1. Considering that A000374 also counts the cycles in the map f(x) = 2x mod n, a(n) is also the number of primitive cycles of that mapping. - T. D. Noe, Aug 01 2003
Equals number of irreducible factors of the cyclotomic polynomial Phi(2n+1,x) over Z/2Z. All factors have the same degree. - T. D. Noe, Mar 01 2008

Crossrefs

Cf. A000374 (number of irreducible factors of x^n - 1 over integers mod 2), A081844.
Cf. A006694 (cyclotomic cosets of 2 mod 2n+1).

Programs

Formula

a(n) = Sum{d|2n+1} mu((2n+1)/d) A000374(d), the inverse Mobius transform of A000374 - T. D. Noe, Aug 01 2003
a(n) = A037225(n)/A002326(n).