A037246 Total number of fixed points in free homeomorphically irreducible trees with n nodes.
1, 0, 0, 1, 1, 1, 3, 5, 10, 16, 38, 66, 143, 268, 564, 1100, 2282, 4546, 9382, 18977, 39112, 79891, 164917, 339195, 702041, 1451628, 3013442, 6257561, 13029327, 27152492, 56698062, 118518363, 248137778, 520085704, 1091520783, 2293229235, 4823466463
Offset: 1
Links
- F. Harary and E. M. Palmer, Probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.
- Index entries for sequences related to trees
Programs
-
Maple
Hpj := proc(Hofxy,p,j) coeftayl(Hofxy,x=0,p) ; coeftayl(%,y=0,j) ; simplify(%) ; end proc: Hxy := proc(x,y,pmax,hxyinit) if pmax = 0 then x*y ; else pp := 1; for p from 1 to pmax do t :=1 ; for j from 1 to p do t := t*(1+x^p*y^j+add(x^(k*p),k=2..pmax+1))^Hpj(hxyinit,p,j) ; end do: pp := pp*t ; end do: x*y*%/(1+x*y) ; end if; end proc: hxyfin := Hxy(x,y,0,0) ; for pmax from 2 to 40 do Hxy(x,y,pmax,hxyfin) ; taylor(%,x=0,pmax+2) ; convert(%,polynom) ; taylor(%,y=0,pmax+2) ; hxyfin := convert(%,polynom) ; hxy := (1+x*y)*hxyfin+subs({x=x^2,y=1},hxyfin)*(1-x*y)-hxyfin^2*(1+x*y)/2+subs({x=x^2,y=y^2},hxyfin)*(x*y-1)/2 ; for p from 0 to pmax do ap := 0 ; for j from 1 to p do ap := ap+j*Hpj(hxy,p,j) ; end do: printf("%d,",ap) ; end do: print() ; end do: # R. J. Mathar, Apr 13 2019
Formula
Reference gives a recurrence.
Extensions
More terms from R. J. Mathar, Apr 13 2019