cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037280 If n is composite replace n with the concatenation of its nontrivial divisors [ A037279 ] then divide out any factors of 2.

Original entry on oeis.org

1, 1, 3, 1, 5, 23, 7, 3, 3, 25, 11, 1173, 13, 27, 35, 31, 17, 2369, 19, 12255, 37, 211, 23, 586703, 5, 213, 39, 12357, 29, 23561015, 31, 1551, 311, 217, 57, 117345609, 37, 219, 313, 6145255, 41, 23671421, 43, 120561, 35915, 223, 47, 2933515203, 7, 251025, 317
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 12 are 1,2,3,4,6,12, so 12 -> 2346 = 2*1173 -> 1173 = a(12).
		

Crossrefs

Cf. A037279.

Programs

  • Maple
    with(numtheory):ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1),j=1..nops(s))):end: a:=proc(n) options remember: local d,i,l,m: if n<3 then RETURN(1) else if not isprime(n) then d:=divisors(n): l:=nops(d): m:=ds([seq(op(convert(d[l-i+1],base,10)),i=2..l-1)]): RETURN(m/piecewise(m mod 2=1,1,2^(ifactors(m)[2][1][2]))) else RETURN(n) fi fi: end; seq(a(n),n=1..70); # C. Ronaldo

Extensions

More terms from Erich Friedman