A037454 a(n) = Sum_{i=0..m} d(i)*6^i, where Sum_{i=0..m} d(i)*3^i is the base 3 representation of n.
0, 1, 2, 6, 7, 8, 12, 13, 14, 36, 37, 38, 42, 43, 44, 48, 49, 50, 72, 73, 74, 78, 79, 80, 84, 85, 86, 216, 217, 218, 222, 223, 224, 228, 229, 230, 252, 253, 254, 258, 259, 260, 264, 265, 266, 288, 289, 290, 294, 295, 296, 300, 301, 302, 432, 433, 434, 438
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Julia
function a(n) m, r, b = n, 0, 1 while m > 0 m, q = divrem(m, 3) r += b * q b *= 6 end r end; [a(n) for n in 0:57] |> println # Peter Luschny, Jan 03 2021
-
Maple
seq(n + (1/2)*add(6^k*floor(n/3^k), k = 1..floor(ln(n)/ln(3))), n = 1..100); # Peter Bala, Dec 01 2016
-
Mathematica
t = Table[FromDigits[RealDigits[n, 3], 6], {n, 0, 100}] (* Clark Kimberling, Aug 03 2012 *)
Formula
From Peter Bala, Dec 01 2016: (Start)
a(0) = 0; a(n) = 6*a(n/3) if n == 0 (mod 3) else a(n) = a(n-1) + 1. (End)
Extensions
Offset changed to 0 by Clark Kimberling, Aug 03 2012