A037462 a(n) = Sum_{i = 0..m} d(i)*8^i, where Sum_{i = 0..m} d(i)*4^i is the base 4 representation of n.
0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 64, 65, 66, 67, 72, 73, 74, 75, 80, 81, 82, 83, 88, 89, 90, 91, 128, 129, 130, 131, 136, 137, 138, 139, 144, 145, 146, 147, 152, 153, 154, 155, 192, 193, 194, 195, 200, 201, 202, 203, 208, 209, 210
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Maple
seq(n + (1/2)*add(8^k*floor(n/4^k), k = 1..floor(ln(n)/ln(4))), n = 1..100); # Peter Bala, Dec 01 2016
-
Mathematica
Table[FromDigits[RealDigits[n, 4], 8], {n, 0, 100}] (* Clark Kimberling, Aug 14 2012 *)
Formula
From Peter Bala, Dec 01 2016: (Start):
a(0) = 0; a(n) = 8*a(n/4) if n == 0 (mod 4) else a(n) = a(n-1) + 1. (End)
Extensions
Offset changed to 0 by Clark Kimberling, Aug 14 2012