cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037834 a(n) = Sum_{i=1..m} |d(i) - d(i-1)|, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5
Offset: 1

Views

Author

Keywords

Comments

Number of i such that |d(i) - d(i-1)| = 1, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n)+1 is the number of iterations of the map x -> A035327(x) needed to reach 0 (see A005811(n) for n>=1). - Flávio V. Fernandes, Apr 28 2025

Crossrefs

Programs

  • Haskell
    a037834 n = sum $ map fromEnum $ zipWith (/=) (tail bs) bs
                where bs = a030308_row n
    -- Reinhard Zumkeller, Feb 20 2014
    
  • Maple
    A037834 := proc(n)
        local dgs ;
        dgs := convert(n,base,2);
        add( abs(op(i,dgs)-op(i-1,dgs)),i=2..nops(dgs)) ;
    end proc: # R. J. Mathar, Oct 16 2015
  • Mathematica
    Table[Total@ Flatten@ Map[Abs@ Differences@ # &, Partition[ IntegerDigits[n, 2], 2, 1]], {n, 90}] (* Michael De Vlieger, May 09 2017 *)
  • Python
    def A037834(n): return (n^(n>>1)).bit_count()-1 # Chai Wah Wu, Jul 13 2024

Formula

a(n) = A005811(n)-1.