A037834 a(n) = Sum_{i=1..m} |d(i) - d(i-1)|, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 3, 4, 5
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
- Index entries for sequences related to binary expansion of n
Programs
-
Haskell
a037834 n = sum $ map fromEnum $ zipWith (/=) (tail bs) bs where bs = a030308_row n -- Reinhard Zumkeller, Feb 20 2014
-
Maple
A037834 := proc(n) local dgs ; dgs := convert(n,base,2); add( abs(op(i,dgs)-op(i-1,dgs)),i=2..nops(dgs)) ; end proc: # R. J. Mathar, Oct 16 2015
-
Mathematica
Table[Total@ Flatten@ Map[Abs@ Differences@ # &, Partition[ IntegerDigits[n, 2], 2, 1]], {n, 90}] (* Michael De Vlieger, May 09 2017 *)
-
Python
def A037834(n): return (n^(n>>1)).bit_count()-1 # Chai Wah Wu, Jul 13 2024
Formula
a(n) = A005811(n)-1.
Comments