A037888 a(n) = (1/2)*Sum_{i} |d(i) - e(i)| where Sum_{i} d(i)*2^i is the base-2 representation of n and e(i) are digits d(i) in reverse order.
0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 0, 2, 1, 2, 1, 1, 0, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 1, 0, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 0, 2, 1, 2, 1, 3
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A064834.
Programs
-
Haskell
a037888 n = div (sum $ map abs $ zipWith (-) bs $ reverse bs) 2 where bs = a030308_row n -- Reinhard Zumkeller, Apr 09 2013
-
Maple
a:= proc(n) local r, ad: r:= proc(s) options operator, arrow: [seq(s[nops(s)-j+1], j = 1 .. nops(s))] end proc: ad := proc(s) local i,j: j := 0: for i to nops(s) do if 0 < abs((s-r(s))[i]) then j := j+1 else end if end do: (1/2)*j end proc: ad(convert(n, base, 2)) end proc: seq(a(n), n = 1 .. 90); # Emeric Deutsch, Aug 20 2016
-
Mathematica
a[n_] := (bits = IntegerDigits[n, 2]; Total[Abs[bits - Reverse[bits]]]/2); Table[a[n], {n, 1, 90}] (* Jean-François Alcover, Jan 16 2013 *)
-
PARI
for(n = 1, 90, v = binary(n); s = 0; j = #v; for(k=1,#v, s+=abs(v[k]-v[j]); j--); s/=2; print1(s,", ") ) \\ Washington Bomfim, Jan 13 2011
Comments