A037915 a(n) = floor((3*n + 4)/4).
1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 28, 28, 29, 30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 43, 43, 44, 45, 46, 46, 47, 48, 49, 49, 50, 51, 52, 52, 53, 54, 55
Offset: 0
Links
- Noga Alon et al., Polychromatic Colorings of Plane Graphs, Discrete and Computational Geometry 42 (2009), 421-442. [From David Pritchard (daveagp(AT)alum.mit.edu), May 07 2010]
- Lars Døvling Andersen, Lower bounds on the cover-index of a graph, Discrete Mathematics 25 (1979), 199-210. [From David Pritchard (daveagp(AT)alum.mit.edu), May 07 2010]
- Ram P. Gupta, On the chromatic index and the cover index of a multigraph, Lecture Notes in Mathematics Volume 642, Springer, 1978, pages 204-215. [From David Pritchard (daveagp(AT)alum.mit.edu), May 07 2010]
- John A. Pelesko, Generalizing the Conway-Hofstadter $10,000 Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Maple
A037915:=n->floor((3*n + 4)/4); seq(A037915(n), n=0..100); # Wesley Ivan Hurt, Nov 30 2013
-
Mathematica
Table[Floor[(3 n + 4)/4], {n, 0, 75}]
-
PARI
a(n)=(3*n+4)\4 \\ Charles R Greathouse IV, Apr 16 2012
Formula
G.f.: (1 + x^2 + x^3)/((1 - x)*(1 - x^4)).
a(n) = 1 + floor(3*n/4).
a(n) = (1/8)*(6*n + 5 + (-1)^n - 2*(-1)^floor((n-1)/2)). - Ralf Stephan, Jun 10 2005
Sum_{n>=0} (-1)^n/a(n) = log(3)/2 - Pi/(6*sqrt(3)). - Amiram Eldar, Jan 31 2023
Extensions
More terms from Robert G. Wilson v, Jan 06 2002
Comments