cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030257 Number of nonisomorphic commutative idempotent groupoids.

Original entry on oeis.org

1, 1, 1, 7, 192, 82355, 653502972, 110826042515867, 479732982053513924168, 62082231641825701423422054735, 275573192431752191557427399293883120600, 47363301285150007842253190185182901101879369430257
Offset: 0

Views

Author

Christian G. Bower, Feb 15 1998, May 15 1998 and Dec 03 2003

Keywords

Crossrefs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (Sum_{d|i} (d*s_d))^((i*s_i^2-s_i)/2) or {i=j, even} (Sum_{d|i} (d*s_d))^((i*s_i^2-2*s_i)/2) * (Sum_{d|i/2} (d*s_d))^s_i or {i != j} (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j). - Corrected by Sean A. Irvine, Mar 27 2020
a(n) is asymptotic to (n^binomial(n-1, 2))/n! = A076113(n)/A000142(n).

A090599 Number of n-element labeled commutative groupoids with an identity.

Original entry on oeis.org

1, 4, 81, 16384, 48828125, 2821109907456, 3909821048582988049, 154742504910672534362390528, 202755595904452569706561330872953769, 10000000000000000000000000000000000000000000000
Offset: 1

Views

Author

Christian G. Bower, Dec 05 2003

Keywords

Comments

Also labeled commutative groupoids with an absorbant (zero) element.

Crossrefs

a(n) = A076113(n)*n. Cf. A038017.

Formula

a(n) = n^(1+binomial(n, 2))
Showing 1-2 of 2 results.