A038078 Number of identity trees with 2-colored nodes.
1, 2, 1, 2, 6, 20, 69, 270, 1026, 4120, 16794, 70230, 298306, 1288912, 5642559, 25007756, 111998920, 506348902, 2308338456, 10602357346, 49026021552, 228085486580, 1067020210339, 5016982766202, 23698640081356, 112422573858292, 535414026652828, 2559204304109868
Offset: 0
Keywords
Links
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(2*b(i-1$2), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n=0, 1, 2*b(n-1$2) -2*add(b(j-1$2)*b(n-j-1$2) , j=1..n-1) -`if`(irem(n, 2, 'r')=0, b(r-1$2), 0)): seq(a(n), n=0..35); # Alois P. Heinz, Aug 02 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n==0, 1, 2*b[n-1, n-1] - 2*Sum[b[j-1, j-1]*b[n-j-1, n-j-1], {j, 1, n-1}] - If[Mod[n, 2]==0, r=n/2; b[r-1, r-1], 0]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
Formula
G.f.: B(x) - B^2(x)/2 - B(x^2)/2, where B(x) is g.f. for A038077.
a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.2490324912281705791649522161843092..., c = 0.356142078281568492877259973613... . - Vaclav Kotesovec, Sep 06 2014