A038122 Start with {1,2,...,n}, replace any two numbers a,b with |a^2-b^2|, repeat until single number k remains; a(n) = minimal value of k.
1, 3, 0, 16, 15, 63, 8, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0
Offset: 1
Examples
a(2) = 3 from (1,2); a(3) = 0 from ((1,2),3); a(4) = 16 from (((1,2),3),4); a(5) = 15 from ((((2,3),5),1),4) a(6) = 63 from (((1,4),(3,5)),(2,6)) [ _Michael Kleber_ ] a(7) = 8 from (((((4,5),6),(2,7)),1),3) [ Kleber ] a(8) = 0 from ((((4,5),7)(2,6))((1,3),8)) [ Guy ] a(9) = 3 from (2,(1,(((6,7),((3,4),8)),(5,9)))) [ Kleber ] a(10)= 1 from ((((((((4,5),9),6),(8,10)),2),3),7),1) [ This and the following are due to _Dean Hickerson_ ] a(11)= 0 from ((((((3,7),(9,11)),6),(8,10)),(1,2)),(4,5)) a(12)= 0 from ((((((1,3),7),(8,10)),(((5,6),9),(11,12))),2),4) a(13)= 1 from (((((((((3,7),(9,11)),6),(8,10)),5),(12,13)),2),4),1) ...
Links
- Dean Hickerson and Michael Kleber, Reducing a Set by Subtracting Squares, J. Integer Sequences, Vol. 2, 1999, #4.
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,-1,0,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,0,1,0,0,-1,0,0,1},{1,3,0,16,15,63,8,0,3,1,0,0,1,3,0,4},120] (* Harvey P. Dale, Jul 29 2015 *)
-
PARI
a(n)=if(n<4||n>7, n*(n+1)/2%6, [16, 15, 63, 8][n-3]) \\ Charles R Greathouse IV, Feb 10 2017
-
Python
def A038122(n): return (16,15,63,8)[n-4] if 3
>1)%6 # Chai Wah Wu, Apr 17 2025
Formula
a(n) = a(n-3)-a(n-6)+a(n-9) for n>16. - Colin Barker, Oct 01 2014
G.f.: x*(4*x^15 +60*x^14 +12*x^13 +8*x^12 -60*x^11 -12*x^10 -8*x^9 +60*x^8 +12*x^7 +7*x^6 -63*x^5 -12*x^4 -15*x^3 -3*x -1) / ((x -1)*(x^2 +1)*(x^2 +x +1)*(x^4 -x^2 +1)). - Colin Barker, Oct 01 2014
Comments