cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038327 Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*1^j.

Original entry on oeis.org

1, 12, 1, 144, 24, 1, 1728, 432, 36, 1, 20736, 6912, 864, 48, 1, 248832, 103680, 17280, 1440, 60, 1, 2985984, 1492992, 311040, 34560, 2160, 72, 1, 35831808, 20901888, 5225472, 725760, 60480, 3024, 84, 1, 429981696, 286654464, 83607552
Offset: 0

Views

Author

Keywords

Comments

T(i,j) is the number of i-permutations of 13 objects a,b,c,d,e,f,g,h,i,j,k,l,m, with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007
These are the rows of A013619 read right to left. Row sums are A001022(i). - R. J. Mathar, Mar 05 2008

Examples

			1
12, 1
144, 24, 1
1728, 432, 36, 1
20736, 6912, 864, 48, 1
248832, 103680, 17280, 1440, 60, 1
2985984, 1492992, 311040, 34560, 2160, 72, 1
35831808, 20901888, 5225472, 725760, 60480, 3024, 84, 1
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

Programs

  • Maple
    for i from 0 to 7 do seq(binomial(i, j)*12^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007