cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094297 Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2.

Original entry on oeis.org

1, 3, 7, 18, 46, 120, 316, 840, 2248, 6048, 16336, 44256, 120160, 326784, 889792, 2424960, 6613120, 18043392, 49247488, 134450688, 367134208, 1002645504, 2738510848, 7480215552, 20433258496, 55818559488, 152486858752
Offset: 1

Views

Author

Herbert Kociemba, Jun 02 2004

Keywords

Comments

In general, a(n,m,j,k) = (2/m)*Sum_{r=1..m-1) sin(j*r*Pi/m)*sin(k*r*Pi/m)*(1+2*cos(Pi*r/m))^n is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = j, s(n) = k.

Crossrefs

First differences of A038508.

Formula

a(n) = (1/3)*Sum_{k=1..5} sin(Pi*k/3)^2*(1+2*cos(Pi*k/6))^n or a(n) = (2^n + (1-sqrt(3))^n + (1 + sqrt(3))^n)/4.
(a(n)) seems to be given by tesseq(- 2'i + 2'j + 2'k - 2i' + 2j' + 2k' - 2'ii' + 2'jj' - 'kk' - 2.5'ik' - 1.5'jk' - 2.5'ki' - 1.5'kj' - e) (disregarding signs) - Creighton Dement, Nov 17 2004
G.f.: ( 1-x-3*x^2 )*x / ( (2*x-1)*(2*x^2+2*x-1) ). - R. J. Mathar, Sep 11 2019
4*a(n) = 2^n + 2*A026150(n). - R. J. Mathar, Oct 25 2022

A162252 Numbers of the form prime(prime(prime(k))) with a digit sum which is prime.

Original entry on oeis.org

5, 11, 179, 331, 599, 919, 1297, 1523, 1787, 2221, 3259, 3637, 3943, 4397, 5381, 6113, 6661, 6823, 8221, 9859, 10631, 11953, 12097, 12301, 12547, 12763, 13469, 14723, 15641, 15823, 17627, 18149, 19577, 20063, 20773, 21529, 23431, 26371, 26489
Offset: 1

Views

Author

Cino Hilliard, Jun 28 2009

Keywords

Comments

Members of A038580 with a digit sum which is prime.

Examples

			For k=6, prime(prime(prime(6))) = A038580(6)=179. The digit sum 1+7+9 = 17 is prime, so 179 is in the sequence.
		

Programs

  • Maple
    read("transforms") ; A038580 := proc(n) ithprime(ithprime(ithprime(n))) ; end:
    for n from 1 to 80 do if isprime(digsum(A038580(n))) then printf("%d,", A038580(n)) ; fi; od: # R. J. Mathar, Aug 14 2009
  • Mathematica
    Select[Table[Nest[Prime, x, 3], {x, 1, 100}],
    PrimeQ[Total[IntegerDigits[#, 10]]] &]
  • PARI
    sodip2(n,m) = /* m multiple nesting of prime(prime(prime..(n) */
    { local(s=0,a,x,y,j,p);
    for(x=1,n, p=prime(x);
    for(i=1,m,p=prime(p));
    a=eval(Vec(Str(p))); y=sum(j=1,length(a),a[j]); if(isprime(y),print1(p","));)
    }

Formula

{A038508(k): A007953(A038508(k)) in A000040, any k}.

Extensions

Edited by R. J. Mathar, Aug 14 2009
Showing 1-2 of 2 results.