cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038518 Number of elements of GF(2^n) with trace 0 and subtrace 0.

Original entry on oeis.org

0, 1, 1, 1, 6, 6, 16, 36, 56, 136, 256, 496, 1056, 2016, 4096, 8256, 16256, 32896, 65536, 130816, 262656, 523776, 1048576, 2098176, 4192256, 8390656, 16777216, 33550336, 67117056, 134209536, 268435456, 536887296, 1073709056, 2147516416
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    0,seq(1/4*2^k-1/4*(-1-I)^k-1/4*(-1+I)^k,k=1..40); seq(coeff(convert(series((-x^3+x^2+x)/((1-2*x)*(1+2*x+2*x^2)),x,50),polynom),x,i),i=0..40); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 16 2004
  • Mathematica
    LinearRecurrence[{0,2,4},{0,1,1,1},40] (* Harvey P. Dale, Mar 31 2020 *)
  • PARI
    concat(0, Vec(x*(1 + x - x^2) / ((1 - 2*x)*(1 + 2*x + 2*x^2)) + O(x^40))) \\ Colin Barker, Aug 02 2019

Formula

C(n, r+0)+C(n, r+4)+C(n, r+8)+... where r = 0 if n odd, r = 2 if n even.
G.f.: (-x^3+x^2+x)/[(1-2x)(1+2x+2x^2)].
a(0)=0; a(n) = ( 2^n - (-1-i)^n - (-1+i)^n )/4, i=sqrt(-1). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 16 2004
a(n) = 2*a(n-2) + 4*a(n-3) for n>3. - Colin Barker, Aug 02 2019