cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038528 If n has decimal expansion abc...d, with k digits, let f(n) be obtained by deleting all k's from abc...d, closing up and deleting initial 0's; sequence gives n such that f(f(f(...(n)))) = 0 or empty.

Original entry on oeis.org

1, 12, 20, 21, 22, 123, 132, 133, 203, 213, 223, 230, 231, 232, 300, 301, 303, 312, 313, 320, 321, 322, 330, 331, 333, 1234, 1243, 1244, 1324, 1334, 1342, 1343, 1423, 1424, 1432, 1433, 1442, 1444, 2034, 2043, 2044, 2134, 2143, 2144, 2234
Offset: 1

Views

Author

Keywords

Comments

The sequence has exactly 14174521 terms, 999999999 is the last and largest. - Reinhard Zumkeller, Jul 04 2012

Examples

			If n=22 (2 digits), f(n) = empty. If n=230 (3 digits), f(n)=20, f(f(n))=0. If n=301 (3 digits), f(n)=1 (1 digit), f(f(n))=empty.
The last 12 terms are: 999999333, 999999900, 999999901, 999999909, 999999912, 999999919, 999999920, 999999921, 999999922, 999999990, 999999991, 999999999.
		

Crossrefs

Cf. A038527.
Cf. A002024, A055642, A031298, subsequence of A138166.

Programs

  • Haskell
    import Data.List ((\\))
    a038528 n = a038528_list !! (n-1)
    a038528_list = gen ([1], 1) where
       gen (_, 10) = []
       gen (ds, len)
          | len `elem` ds && chi ds
            = foldr (\u v -> u + 10*v) 0 ds : gen (succ (ds, len))
          | otherwise = gen (succ (ds, len))
       chi xs = null ys || ys /= xs && chi ys where
                ys = tr $ filter (/= length xs) xs
                tr zs = if null zs || last zs > 0 then zs else tr $ init zs
       succ ([], len)   = ([1], len + 1)
       succ (d : ds, len)
           | d < len = (head (dropWhile (<= d) a002024_list \\ ds) : ds, len)
           | otherwise = (0 : ds', len') where (ds', len') = succ (ds, len)
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    zeroQ[n_] :=  FixedPoint[ Function[{k}, DeleteCases[id = IntegerDigits[k], Length[id]] // FromDigits[#, 10]&], n] == 0; Select[Range[10^4], zeroQ] (* Jean-François Alcover, Dec 10 2014 *)

Formula

A054055(a(n)) = A055642(a(n)). - Reinhard Zumkeller, Jul 04 2012