A038607 a(n) is the smallest prime number k such that k > n*pi(k), where pi(k) denotes the prime counting function.
2, 11, 37, 127, 347, 1087, 3109, 8419, 24317, 64553, 175211, 480881, 1304707, 3523901, 9558533, 25874843, 70115473, 189961529, 514272533, 1394193607, 3779851091, 10246935679, 27788566133, 75370121191, 204475052401, 554805820711, 1505578023841, 4086199302113, 11091501631019, 30109570413007
Offset: 1
Examples
For n=1, a(1) = 2, since 2 > 1*pi(2) = 1*1. - _N. J. A. Sloane_, Dec 09 2020 For n=3, the 12th prime (37) is the first one satisfying p(k) > 3k.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..50
Programs
-
Mathematica
k = 1; Do[ While[ Prime[k] < n*k, k++ ]; Print[Prime[k]], {n, 1, 25} ]
-
PARI
k=1;n=1;forprime(p=3,4e9,if(p/n++>k,print1(p", ");k++)) \\ Charles R Greathouse IV, Sep 06 2011
Extensions
Extended by Robert G. Wilson v and Ray Chandler, Dec 01 2004
a(26)-a(30) from Charles R Greathouse IV, Sep 05 2011, Sep 06 2011
a(31)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018
Comments