cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038718 Number of permutations P of {1,2,...,n} such that P(1)=1 and |P^-1(i+1)-P^-1(i)| equals 1 or 2 for i=1,2,...,n-1.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 21, 31, 46, 68, 100, 147, 216, 317, 465, 682, 1000, 1466, 2149, 3150, 4617, 6767, 9918, 14536, 21304, 31223, 45760, 67065, 98289, 144050, 211116, 309406, 453457, 664574, 973981, 1427439, 2092014, 3065996, 4493436, 6585451
Offset: 1

Views

Author

John W. Layman, May 02 2000

Keywords

Comments

This sequence is the number of digits of each term of A061583. - Dmitry Kamenetsky, Jan 17 2009

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-1},{1,1,2,4},50] (* or *) CoefficientList[ Series[(x^2-x+1)/(x^4-x^3+x^2-2x+1),{x,0,50}],x] (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,1,-1,2]^(n-1)*[1;1;2;4])[1,1] \\ Charles R Greathouse IV, Apr 07 2016

Formula

From Joseph Myers, Feb 03 2004: (Start)
G.f.: (1 -x +x^2)/(1-2*x+x^2-x^3+x^4).
a(n) = a(n-1) + a(n-3) + 1. (End)
a(n) = Sum_{i=1..n} A058278(i) = A097333(n) - 1. - R. J. Mathar, Oct 16 2010

Extensions

More terms from Joseph Myers, Feb 03 2004