A245694 Table read by rows: n-th row lists odd composites c such that Q + c is prime, where Q is the n-th primorial and c < prime(n+1)*prime(n+2).
9, 25, 49, 121, 289, 1849, 5041, 11881, 32761, 109561, 196249, 6466849, 9369721, 30283009, 52374169, 72880369, 1000267129
Offset: 1
Examples
Considering primorial 2*3*5*7 = 210, we seek all the odd composites c < 11*13 such that (210 + c) is prime. We begin 210+9, 210+15, 210+21, ..., 210+141. Only one prime results: 331 = 210 + 121. 121 is thus a term in the sequence. A similar evaluation for primorial 2310 produces no terms for the sequence.
Links
Programs
-
Mathematica
Table[With[{Q = Product[Prime@ i, {i, n}], s = Prime[n + 1] Prime[n + 2]}, Select[Range[4, s - 1], And[CompositeQ@ #, PrimeQ[Q + #]] &]], {n, 100}] // Flatten (* Michael De Vlieger, Sep 11 2017 *)
-
PARI
genit()=n=1;while(n<100,Q=prod(x=1,n,prime(x));r=prime(n+1);s=prime(n+2);Z=r*s;c=9;while(c
Extensions
a(16)-a(17) from Michael S. Branicky, Jun 09 2023
Comments