cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038880 Primes p such that 10 is not a square mod p.

Original entry on oeis.org

7, 11, 17, 19, 23, 29, 47, 59, 61, 73, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 167, 179, 181, 193, 211, 223, 229, 233, 251, 257, 263, 269, 313, 331, 337, 349, 353, 367, 379, 383, 389, 419, 421, 433, 457, 461, 463, 487, 491, 499, 503, 509, 541, 571
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(10)). - N. J. A. Sloane, Dec 26 2017
Also primes p such that p divides 5^(p-1)/2 + 2^(p-1)/2. - Cino Hilliard, Sep 06 2004
All primes p such that (p^2 - 1)/24 mod 10 = {2,5}. - Richard R. Forberg, Aug 31 2013
Primes that are 7, 11, 17, 19, 21, 23, 29, or 33 mod 40. - Charles R Greathouse IV, Mar 18 2018
Primes p such that p-1 divided by the number of the digits of the period of 1/p results in an odd number. - Davide Rotondo, Apr 28 2024

Crossrefs

Cf. A007348.

Programs

  • Mathematica
    Select[ Prime@Range[2, 105], JacobiSymbol[10, # ] == -1 &] (* Robert G. Wilson v, Dec 15 2005 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=7,lim, if(kronecker(10,p)<0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018
    
  • Python
    from sympy import isprime, jacobi_symbol
    def ok(n): return n%2 == 1 and isprime(n) and jacobi_symbol(10, n) == -1
    print([k for k in range(575) if ok(k)]) # Michael S. Branicky, May 24 2022

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Mar 18 2018

Extensions

More terms from Robert G. Wilson v, Dec 15 2005