A038994 Number of sublattices of index n in generic 7-dimensional lattice.
1, 127, 1093, 10795, 19531, 138811, 137257, 788035, 896260, 2480437, 1948717, 11798935, 5229043, 17431639, 21347383, 53743987, 25646167, 113825020, 49659541, 210837145, 150021901, 247487059, 154764793, 861322255, 317886556, 664088461, 678468820, 1481689315
Offset: 1
References
- Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 6}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
Formula
f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=7.
Multiplicative with a(p^e) = Product_{k=1..6} (p^(e+k)-1)/(p^k-1).
Sum_{k=1..n} a(k) ~ c * n^7, where c = Pi^12*zeta(3)*zeta(5)*zeta(7)/3572100 = 0.325206... . - Amiram Eldar, Oct 19 2022
Extensions
More terms from Amiram Eldar, Aug 29 2019