cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056175 Number of nonunitary prime divisors of the central binomial coefficient C(n, floor(n/2)) (A001405).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 2, 2, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

Number of prime divisors of the largest square dividing A001405(n). (A prime divisor is nonunitary iff its exponent exceeds 1.)

Examples

			For n=10, binomial(10, 5) = 252 = 2*2*3*3*7 has 3 prime divisors of which only one, p=7, is unitary, while 2 and 3 are not. So a(10)=2.
For n=256, binomial(256, 128) also has only 2 prime divisors (3 and 13) whose exponents exceed 1 (4 and 2, respectively), thus a(256)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[FactorInteger[Binomial[n, Floor[n/2]]][[All, -1]], e_ /; e > 1], {n, 105}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    a(n)=omega(core(binomial(n, n\2), 1)[2]) \\ Charles R Greathouse IV, Mar 09 2017

Formula

a(n) = A001221(A000188(A001405(n))).
a(n) = A001221(A056057(n)).

Extensions

Edited by Jon E. Schoenfield, Mar 05 2017

A056676 Number of non-unitary but squarefree divisors of binomial(n,floor(n/2)). Also number of nonsquarefree but unitary divisors of binomial(n,floor(n/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 4, 6, 0, 8, 8, 8, 8, 16, 0, 16, 0, 16, 32, 32, 0, 32, 48, 48, 56, 56, 96, 96, 64, 128, 128, 192, 256, 384, 384, 384, 512, 768, 512, 512, 512, 512, 448, 448, 768, 896, 896, 896, 896, 896, 768, 768, 2048, 2048, 4096, 4096, 2048, 2048, 2048, 2048
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Examples

			For n = 14, binomial(14,7) = 3432 has 32 divisors, 16 unitary, 16 squarefree. The size of overlap is 8. The complementary parts are: non-unitary/squarefree set ={2,6,22,26,66,78,286,828}, while the unitary/not squarefree set of equal size is {8,24,88,104,264,312,1144,3432}. So a(14) = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 2, 1]; a[1] = 0; a[n_] := 2^Length[fct = FactorInteger[Binomial[n, Floor[n/2]]]] - Times @@ f @@@ fct; Array[a, 100] (* Amiram Eldar, Oct 04 2024 *)
  • PARI
    a(n) = {my(f = factor(binomial(n, n\2)), e = f[, 2]); 2^omega(f) - prod(i = 1, #e, if(e[i] == 1, 2, 1)); } \\ Amiram Eldar, Oct 04 2024

Formula

a(n) = A039593(n) - A000005(A055231(x)) = A039593(n) - A000005(A007913(x)/A055229(x)), where x = A001405(n) = binomial(n, floor(n/2)).
a(n) = A039593(n) - A056673(n). - Sean A. Irvine, May 02 2022
a(n) = A056674(A001405(n)). - Amiram Eldar, Oct 04 2024
Showing 1-2 of 2 results.